Behavioural Design of Sensor Network Applications Using Activity-Driven States

Amir Taherkordi, Frank Eliassen, and Einar Broch Johnsen
Department of Informatics
University of Oslo, Norway
{amirhost,frank,einarj} @ifi.uio.no

Abstract—The challenge of designing and programming
Wireless Sensor Network (WSN) applications has gained in-
creasing attention in recent years. While most existing pro-
gramming models for WSNs share the same goal of improving
software modularity, there exists a gap between the structural
software design patterns offered by them and the high-level
description of system components. The gap has appeared due
to the lack of a software design solution that can model the
unique behavioural and dynamic aspects of WSN software, e.g.,
activities, states, timed operations, and event-driven control
flow. In this paper, we present a behavioural design solution
for sensor networks based on the principles of finite automata,
abstracting the complicated dynamic aspects of WSN software
systems through the concept of activity-driven states. This
promises a design model which effectively fills the above gap
and provides the programmer with concrete design elements
that can be directly mapped to the constructs of target
programming languages. Moreover, it allows more accurate
verification and validation of software systems for WSNs by
precisely formulating their behavioural elements.

Keywords-Sensor Networks, Behavioural Design Model, Au-
tomata, Activity-driven States

I. INTRODUCTION

WSN technology is being increasingly adopted in a wide
variety of applications ranging from building and indus-
trial automation to more safety critical applications such
as healthcare and patient monitoring. Whereas the early
WSN applications were primarily concerned with sensing
primitive environmental data and sending those data to a
central node, sensor nodes in today’s applications are often
multi-functional and tightly interact with other devices in
the field in order to realize intricate use-case scenarios.
This implies that advanced WSN applications need particular
attention to the analysis and design of software prior to
implementation. This can significantly improve the process
of software development and allow the developer to validate
and verify the correctness of software functionality based on
proper analysis and design models.

From the software design perspective, a critical need
for building WSN applications is the dynamic design view
of the system which emphasizes the flow of control and
sensed data, processes and their interactions, and changes to
the state of sensor nodes. The recent programming models
for WSNs have attempted to address this concern to some
extent, both at the node level and the network level. Beside
the careful consideration given to resource limitations in

those models, one main goal has been to address the
structural design of sensor software by introducing higher
levels of abstraction, e.g., event-based programming [6],
componentization [8], [5], [17], and tuple space [4].

However, the software development process suffers from
a gap between the description of dynamic aspects of the
system and the aforementioned structural design models. In
other words, we need design methodologies that allow the
programmer to obtain a concrete behavioural design view
of WSN applications. Although this concept is not new in
the software engineering community, a careful consideration
should be given when it comes to the engineering of WSN
software. The reason is that, in this case, the behaviour
of system is closely intertwined with events, timing, states,
concurrency, and error-prone actions. A design method that
considers all these concerns in a single modeling approach
can provide an unprecedented dynamic view of the appli-
cation logic which aids programmer understanding of code,
error detection, and program verification.

Research on modeling approaches for WSNs has recently
received increasing attention. It is mainly focused on ab-
stracting complexities of the application logic using standard
modeling techniques, such as Model-Driven Development
(MDD) and behavioural UML diagrams. The main focus
of research in this area has been on modeling coarse-
grained and network-level behaviours (e.g., sampling and
aggregation) and optimization [7], [19], [18]. Although this
is seen as an important step towards engineering the be-
havioural aspects of WSN software, further work is required
to formulate the behaviour at a more concrete level. Addi-
tionally, the traditional state machine theories such as Timed
Automata [1], Time Petri Net [20], and StateCharts [10] can
serve as a good inspiration to this paper, but they address a
limited number of issues and impose formalizations that are
not needed for modeling WSNs.

In this paper, we aim to facilitate the design and develop-
ment of WSN applications via a design method abstracting
the behaviour of the software based on the concept of
activity-driven states and the associated modeling frame-
work, called SENSEACT. This provides the developer with:
i) a new design approach to model system processes as a set
of timed activities along with conditions to transit between
the activities, and ii) coarse-grained programming constructs
that are obtained from the design model and abstract the

behavioural states in the system. SENSEACT is inspired by
the principles of finite automata and formulates the new
design model based on the concepts of event, timing, activity
and state. These are essentially the common attributes of
most WSN applications which are inherently event-driven,
function in a timely manner, and transit between different
states triggered by events.

The rest of paper is organized as follows. In Section II,
we demonstrate a typical motivation application for the
behavioural design of WSNs. The principles of SENSEACT
are presented in Section III. In Section IV, we introduce
SENSEACT-based design and development of WSN appli-
cations and report our preliminary evaluation result. Related
work is presented in Section V and then we conclude this
paper and identify some future work in Section VI.

II. MOTIVATION

In this section, we focus on a typical healthcare appli-
cation and motivate the need for a concrete behavioural
design method for WSNs. Healthcare applications introduce
strict requirements on end-to-end system reliability and
data delivery [11]. In applications that require reliable data
delivery, communications are often bidirectional in order to
ensure the receipt of data messages by the gateway. This
process becomes even more complex when the sensor nodes
are configured to listen to the acknowledgement (ACK)
messages from the gateway unit in a time window, reducing
the energy usage by a periodic listening scheme [2]. In this
case, modeling the control flow, scheduling, waiting, and
actions in each step is a non-trivial design problem.

We present a simplified scenario of a patient tracking
application which requires constant and reliable location
data propagation by sensor nodes. The more frequent is
the sampling of location data, the more accurate is the
localization in terms of time. In addition to motion detection,
the sensor nodes, in such applications, may be equipped with
other types of sensors, e.g., temperature sensor to measure
the body temperature of tracked patients. Below, we describe
the sequence of actions that implements this simple scenario:

“When a node starts up, it checks the initial settings and
default parameters like radio channel, then it sends the first
positioning packet. Afterwards, it waits for ¢y milliseconds
(ms) before starting the listening window of ¢; ms (for
receiving the gateway’s ACK). If no ACK data is received,
it will create a second listening window of t2 ms. If this
remains in the same situation, the last listening window of
t3 ms is created. If the node eventually receives the ACK, the
program proceeds with the next round of packet propagation
after 7; ms interval. Otherwise, it immediately repeats the
above sequence of actions. In parallel to the above process,
the temperature sensor is polled every t4 ms for detecting
temperature changes.”

Modeling the behavioural view of this simple scenario
needs a design approach that can abstract scheduling, lis-

tening, order of activities, and events. It should also abstract
program states and their transition plan so that the developer
can verify the accuracy of the program control flow. From
a bottom-up view, the design method should yield artefacts
interpretable to programming constructs that implement be-
havioural activities, their interactions, and timing constraints.
These arise the need for a single modeling approach that
can mitigate the complexity of modeling and developing
dynamic aspects of WSN applications. To the best of our
knowledge, no existing work proposes such an approach.

III. SENSEACT: PRINCIPLES AND BASIC DEFINITIONS

A SENSEACT model is essentially an extension of finite
automaton (i.e., a graph containing a finite set of nodes
or locations and a finite set of labelled edges) consisting
of activity-driven states and transitions. An activity-driven
state, called ActState, not only indicates the state that a
program is running in, but also represents an activity being
performed within a state. For example, the data listening
ActState is a state in which the program constantly listens
to incoming data traffic from a gateway unit. As shown
in Figure 1, ActStates can also be labelled with a time
value, indicating the duration of activity execution, e.g., the
duration of ActState Ss is set to t3 ms. Transitions between
ActStates take place according to the output of activity
execution using transition functions. Similar to ActStates,
transitions in SENSEACT can be delayed, rather than being
performed immediately. Delayed transitions are useful when
an ActState is successfully completed and the program must
wait for a certain time before moving to the next ActState.

t3
Figure 1: SENSEACT Model

Execution of an ActState may need to retain a set of
ActState variables called state variables. The scope of a
state variable is either transition-level or global-level. The
former includes all values returned by an ActState for the
use of next ActState(s), while the latter is the set of variables
globally shared by all ActStates.

We formulate the definition of SENSEACT as follows:

Definition 1. A SENSEACT automaton is a 8-tuple
(@Q,%,6,V,S,(, F,qo) where

1) @ is the finite set of ActStates

2) X is the finite set of ActState execution results

3) 0:Q x X — P (Q) is the transition function

4) V is the finite set of state variables

5) SCQxP(V)xQ is a set of edges for local state

variables transition

6) (:(Q — t assigns time constraints to states

7) EC QxtxQ is aset of edges for delayed transitions

8) qo is the start ActState

The above formal definition precisely describes what we
mean by an activity-based automaton. Obviously, () denotes
the set of all ActStates in a design scenario. Execution of
ActState ¢; returns a value from Y. The transition function
0 takes as arguments an ActState and an input from X and
returns the next ActStates which belong to P (Q), the power
set of (). Local state variable transition is specified by the set
S, e.g., (¢, {varl,var2}, q;) identifies the state variables
that should be retained for transition ¢;—¢;. Global state
variables are accessible by all states, thereby, we do not need
to consider them in transitions. Timing is the key design
principle of SENSEACT, shared by both transitions and
ActStates. While ¢ identifies the time constraint of delayed
ActStates, E' denotes the set of all delayed transmissions. For
example, an edge (g;, 20ms, ¢;) is a transition from state ¢;
to g; with 20 ms delay.

Figure 2 depicts a simple SENSEACT, called A. The set
of ActStates of A is defined as Q={qinit, send; Qiisten
where ¢;n;; is the start ActState and Y={yes, no} is the
set of activity execution outputs. The transition function
in this example is quite simple, e.g., fOr Ginit—Qsend it
should ensure that ¢;,;; has been done successfully (i.e.,
equal to yes). We define two global state variables ch_no
and seq_no to retain the radio channel number and the
sequence number of data transmission, respectively. The two
time constraints in this example are (gsend, 50 MmS, Qiisten)
and ((qiisten)—20 ms. The former specifies that we need
to wait for 50 ms after completing gsenq, While the latter
denotes that ActState qj;sten, should continue listening for

20 ms.
send S0ms 20ms

Figure 2: An Example of SENSEACT

Transitions are central to SENSEACT as they basically
represent a high-level execution flow of major software com-
ponents. Therefore, their specifications should be generic
enough to meet all execution patterns between activities.
Parallel transition is an important aspect of transitions,
enabling parallel execution of activities when the function
§(Q,X) returns more than one ActState. For example, if
the sensor initialization state is performed successfully, the
program may require to initiate two different ActStates:
listening to the data traffic and polling the temperature
sensor regularly. To formulate this, assume that SENSEACT
M is in ActState g, with the possible ActState results of
Y={r1,r2}. If the execution of ActState g, returns r1, then
ActStates P={q;,pj, ..., qn} are executed simultaneously if
(gm,71)— P, except for the transition (g, r1)—q) with the
time constraint of ¢ ms (i.e., delayed transition). Putting
the parallel ActStates in a horizontal layout can increase
the expressiveness of the model, as shown in Figure 3a.

If the execution order is important, parallel transitions are
described like (Sl, y)—>({52, 522}, E) {Sg, SQQ}EP (Q) is
a totally ordered set with ordering >, which represents the
execution order, e.g., So>S2o.

The timing feature of SENSEACT is further extended
with the concept of parametric repetition. Repetition sup-
port in SENSEACT is one of its important features as it
allows the programmer to abstract operations performed
repetitively and maybe with different delay times in each
stage of execution, e.g., the sensor node may make three
consecutive attempts with different time windows to listen
to an incoming data packet. Generally speaking, WSNs are
inherently error-prone (e.g., message losses and crashes)
and the program execution model is often intertwined with
code that might need to re-run a function for fault handling
purposes. Therefore, ActState S can be label with the
repetitive sequence of executions 7T={t1, ta, ..., t,, }, Where
t; denotes the waiting time for the execution of activity S,
after the execution at time ¢;_; (see Figure 3b). Therefore,
we complete the description of E in Definition 1 with
w : Q—7T, where w defines the repetitive ActStates and
T denotes the ordered set of time values for each repetition.

@ (b) (©) (@)

Figure 3: a) Concurrent Transitions, b) Repetition, c)
Pull-based Event, and d) Push-based Event

Incorporating events to SENSEACT is of high importance
as WSN applications are event-driven by nature and the
control flow may change by event occurrence. Two types
of events should be considered for modeling: pull-based
and push-based events. While the former is triggered by
a piece of code polling the system for events regularly, the
latter are events that originate from hardware. As shown
in Figure 3c, pull-based events can simply be described by
two ActStates: one for event polling in regular interval .,
and another ActState for event generation. However, push-
based events interrupt execution of the running ActState S,
transit temporarily to an event processing state £/ and return
to the original ActState S (see Figure 3d). When returning
to ActState S, the model either: i) resumes the execution of
ActState .S until ¢, is expired, or ii) exits from .S and transits
to another ActState based on the output of ActState . As
a result, push-based ActStates should have mutual transition
edges with ActStates that follow the second scenario. To
formulate push-based transitions, we extend the notations of
Definition 1 with 6. : E=P (Q), where E is the finite set
for push-based ActStates.

IV. SENSEACT-BASED MODELING OF WSN
APPLICATIONS

In this section, we demonstrate SENSEACT’s method for
design and programming of WSN applications based on the
principles presented in the previous section. This method
is built up on a design perspective in which each node
of the network is in a behavioural state at a given point
in time, can stay in the same state for a given period of
time, and will transit to another state either immediately or
with a certain amount of delay. As shown in Figure 4, the
outcomes of SENSEACT are two artefacts: i) a SENSEACT-
based design model with notations that visualize all design
issues discussed in the previous section, and ii) a set of
programming guidelines and templates that assist the pro-
grammer to map the elements of the design model to real
programming constructs of the target language.

Node 1 __Node 2

Programming
SENSEACT Design Model Constructs

Figure 4: Overall view of SENSEACT’s artefacts

The first design step is to identify the behavioural states
that the application software can enter over its lifetime,
including the transition model between different states. Each
ActState represents an operation that takes part in imple-
menting a use case, and at the same time it denotes a
state of the application when performing the operation. The
transition model is described at the network level in such a
way that the end user can gain an overall view on all possible
states of the application, as well as their transition map.
The obtained ActStates, including the transitions, should be
examined with respect to timing, repetitive execution and
events according to the principles presented in Section III.

Considering fault modeling is also a significant design is-
sue as faults are likely to occur frequently and unexpectedly
in WSNs. SENSEACT models faults as normal ActStates
that are responsible to handle the faults with the goal of
consolidating similar fault handling functions. In this way,
the design model will be enhanced with a set of well-
defined fault-handler ActStates that can be reused by other
ActStates. It also allows the programmer to verify the fault
management flows in different conditions.

Modeling Motivation Application. We revisit here the
motivation application scenario and demonstrate the ef-
fectiveness of SENSEACT for modeling the activities and
flow of control. Note that we focus only on a part of
scenario dealing with the propagation of positioning data
and temperature sensing. Figure 5 depicts the ActStates and
corresponding transitions involved in the scenario, where the
right side shows part of model running on the gateway unit.

controlling is the central ActState triggering the execution
of two core activities: sending the positioning data and
polling the temperature sensor. ActState execution can be
either successful or failed, thus ¥={yes, no} (For simplic-
ity, we have removed yes labels in the figure). Two types
of time constraints should be considered: i) on transition:
e.g., positioning data should be sent every 3 minutes and
data listening should be started 200 ms after sending a
packet, and ii) on ActState execution: e.g., staying in the
data listening ActState for 100 ms. temperature reading also
follows the pull-based event pattern, where controlling polls
the temperature sensor every one minute.

Sensor Node Gateway
TN 7 N 3min P xi)acke? “ e J;)acke;*\
—) ‘
\|”mﬁ|IZIng f\ controling_ > sending \._receiving
7""'”/3 200ms o
o ————_no PN
-~ ™ - ~ (packet
(tem_P. \ a datg { (_processing P
wdlnq N\ listening _ — 2y
no \f 50ms
4 ""'fau""'—\ N v ——";adi;——_\\ - ;\CKi ~
| i tori { '
ook > onioring N sending_/

Figure 5:
SENSEACT

Modeling motivation application with

A. SENSEACT-Driven Programming and Runtime Support

As discussed before, one main goal for proposing
SENSEACT is to facilitate programming of behavioural
aspects of WSN applications. In this section, we discuss
how to interpret the elements of a SENSEACT model to
a set of programs that can be assembled according to the
transitions in the design model. Note that the program tem-
plates presented in this section are not tied to any particular
programming language, rather the goal is to explore the
programming concerns and generic modules.

ActStates are central to the process of transform-
ing SENSEACT models to implementation models. Each
SENSEACT entity is considered as a programming construct
(e.g., a component or struct) that exposes an interface
for life-cycle management (i.e., initiating, executing, and
terminating), as well as interfaces for interaction to other
ActStates. Figure 6 represents a generic view of an ActState
entity along with the required functions. As shown, it may
contain local state variables which should be transferred to
next ActStates in the sequence. stayIn (Time duration)
is one of the key interfaces, allowing the programmer to set
the time period to stay in a state.

Transitions between ActStates can happen internally and
externally. The internal transition is introduced for situations
where we need to transit in the middle of one ActState to
another ActState, e.g., the controlling ActState in Figure 5
requires to trigger sending packet, then proceeds with creat-
ing next ActStates in the sequence like radio monitoring. The
external transition is defined as moving to the next ActState

contruct ActState(
stateVarType stateVarl;

stateVarType stateVarN;
create (params) ;

execute (params) ;
destroy () ;

void stayIn(Time duration);
ResultType getStateReturnValue();

: .

Figure 6: Generic description of ActState

when the execution of current state is completed, e.g., in
Figure 5 the transition from initializing to controlling is an
external transition.

The other important aspect of SENSEACT-driven pro-
gramming is the runtime system that hosts ActStates and
transitions. Figure 7 illustrates the design model of the
runtime support system and its main components. Processing
and translating the model (Model Processor), managing the
life-cycle of ActStates (ActState Manager), handling the
transitions between ActStates and state variables (Transition
Handler), and scheduling the timed ActStates and transitions
(Generic Scheduler) are the key features of the runtime
system. The latter separates all timing concerns from the
application code and offers a generic timing service for
delaying transitions and ActState execution.

Processor Handler Scheduler

Model
Manager

ActState H Transition H Generic ‘

SENSEACT Runtime Support

Programming
Abstraction

‘ ‘ Operating System/Firmware

Figure 7: Core components of SENSEACT runtime sys-
tem

B. Preliminary Evaluation

The evaluation of SENSEACT should be considered from
two aspects. The first part is the programming abstraction
and the runtime model. This will assess if the overhead of
the runtime system is acceptable in terms of resource usage
and runtime performance metrics. Since this component
of SENSEACT is platform-specific, we may gain different
results on different software platforms. For example, if the
operating system or firmware exposes a well-defined timer
event interface, Generic Schedular will become a lightweight
delegator component.

In this paper, we focus only on the second aspect of
the evaluation which is the assessment of the model itself.
Table I summarizes the comparison between SENSEACT and
two set of approaches (see Section V). We include the main
evaluation metrics according to the principles of SENSEACT
and ignore detailed aspects like parametric repetition. The

table shows that MDD approaches pay special attention to
code generation, while the formal approaches in the second
category address low-level abstraction needs. It indicates that
SENSEACT aims to address both, while the code generation
is supported to some extent (TSE). By low-level abstraction,
we mean that the modeling technique can describe any
detailed aspects of system behaviour, which is not the case
in high-level ones.

Table I: A comparison between SENSEACT and existing
behavioural modeling approaches

= g

<o ey = =

= & k| £ 5 3

S o 7 = £ S

- 3

S £ = = 3 =

] — Y @

& e > > @ s

2 < = = =)

< S)) S >
Approach < = a a] =
UML2Act.[7] High Net. No | Maybe | Yes No
MDD [16] High | Net/Node | No No Yes N/A
MDD [18] High | Net/Node | No No Yes N/A
MDD [9] High Net. No Yes Yes N/A
T-PetriNets All Any No Yes N/A | Yes
T-Automata All Any Yes No N/A No
StateCharts Low Object No No N/A | Yes

[SENSEACT [] Low | Net/Node | Yes | Yes [TSE | Yes |

V. RELATED WORK

In this section, we discuss three main categories of
approaches abstracting the behaviour of WSN applications:
structural design models, MDD approaches, and state-based
formalisms.

WSN programming models allow the programmer to
obtain a structural design model, visualizing the structure
of software modules and their behaviour at a very detailed
level. For instance, component-based solutions [8], [5], [17]
convert the sensor software to a set of self-contained blocks
of functionality that can communicate to each other via
interfaces. Abstract Task Graph [15] introduces the notions
of Abstract Task and Channel to enable data-centric design
of WSN applications. These approaches, in fact, simplify the
design of software, but modeling the dynamic behaviours
such as activities, delayed interactions, states and flow of
control needs a new abstraction atop them.

The second category is related to applying standard soft-
ware modeling techniques to describe the logic of WSN
applications. Some initiatives have been taken to employ
behavioural UML diagrams, such as Activity diagram, for
visualizing and implementing the software as a set of
activities. In [7], UML Activity Diagrams are extended to
introduce control structures in the execution flow of software
deployed on sensor nodes. Glombitza et al. in [9] propose
using State Machines to orchestrate Web services and control
flows on sensor nodes. However, the bridge between models
and the detailed behavioural aspects of application logic
still remains unsolved in the above approaches. Furthermore,

there exist studies that have exploited the concept of MDD
to reduce the cost of application development [16]. In [19],
a framework is introduced to apply MDD and evolutionary
algorithms to select the optimal model of agent-based WSN
applications based on non-functional optimization criteria.
Inspired by the same framework, in [18] the authors present
a model-driven approach, including an automatic model
transformation process, for programming data-centric sensor
networks. RuleCaster [3] and Flow [14] propose Domain-
specific Languages to model WSNs. All these approaches
focus on high-level modeling abstractions for complex ap-
plication logics. We believe that SENSEACT can serve as
a complementary model to these approaches with its more
concrete abstraction for WSN applications’ behaviour.
State machine formalisms are also applied in modeling
WSNs. In [13] and [12], techniques are proposed to optimize
programming and formulate interaction between TinyOS
components respectively, using StateCharts [10]. However,
state diagrams in these approaches model the different states
of a single object in the system and do not address timing
constraints. Timed Automata [1] define the concept of time
as a set of real-valued clocks which measures the passage of
time and can be reset. According to the formal definition of
Timed Automata, an edge (¢, a, ¢, 7, ¢') of an automaton E is
a transition from state ¢ to ¢’ with action or alphabet a, clock
constraint ¢ and clock resets . This indicates that the timed
automaton spends time only in states, not in edges. However,
we need the capability to distinguish timing constraints in
states from transitions, where in (¢,,,r)—¢n both ¢, and
r are delayed (see motivation application). The global real-
valued clocks is also different from the relative and local
time calculation model (i.e., state-to-state) in this paper.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented SENSEACT, a modeling ap-
proach to fill the gap between the behavioural description
of WSN software and the structural design models proposed
by typical programming models. SENSEACT is built on the
principles of finite automata and introduces new notations
and formalisms to allow modeling of the unique behavioural
aspects of WSNss, including timed activities, states, events,
and delayed transitions. It also proposes an approach for
interpreting the behavioural design elements to a set of
coarse-grained programming constructs implementing the
dynamic behaviour of WSNs, both at the node level and
the network level. Implementing the runtime system of
SENSEACT on one of popular sensor operating systems and
evaluating its efficiency are in the plan for our future work.

REFERENCES

[1] Rajeev Alur and David L. Dill. A theory of timed automata.
Theor. Comput. Sci., 126(2), April 1994.

[2] A. Bachir, M. Dohler, T. Watteyne, and K.K. Leung. Mac
essentials for wireless sensor networks. Communications
Surveys Tutorials, IEEE, 12(2), quarter 2010.

[3] U. Bischoff and G. Kortuem. A state-based programming
model and system for wireless sensor networks. In Pervasive
Computing and Communications Workshops, PerCom Work-
shops '07, pages 261-266, 2007.

[4] Paolo Costa et al. Programming wireless sensor networks
with the teenylime middleware. In Middleware '07: Proc.
of the ACM/IFIP/USENIX Conf. on Middleware, Newport
Beach, California, 2007. Springer-Verlag New York, Inc.

[5] Geoff Coulson et al. A generic component model for building
systems software. ACM Trans. Comput. Syst., 26(1), 2008.

[6] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb
Ali. Protothreads: simplifying event-driven programming
of memory-constrained embedded systems. In SenSys ’06:
Proc. of the 4th Conf. on Embedded sensor systems, Boulder,
Colorado, USA, 2006. ACM.

[7] Gerhard Fuchs and Reinhard German. Uml2 activity diagram
based programming of wireless sensor networks. In Proc. of
the 2010 ICSE Workshop on Software Engineering for Sensor
Network Applications, SESENA °10, NY, USA, 2010.

[8] David Gay et al. The nesc language: A holistic approach
to networked embedded systems. In PLDI ’03: Proc. of the
ACM SIGPLAN Conf. on Programming language design and
implementation, San Diego, California, USA, 2003. ACM.

[9] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer. Using
state machines for a model driven development of web
service-based sensor network applications. In Proc. of the
Workshop on Software Eng. for Sensor Network Applications,
SESENA ’10, NY, USA, 2010.

[10] David Harel. Statecharts: A visual formulation for complex
systems. Science of Computer Programming, 8(3), 1987.

[11] JeongGil Ko et al. Wireless sensor networks for healthcare.
Proceedings of the IEEE, 98(11):1947 —1960, nov. 2010.

[12] Volker Menrad and Miguel Garcia. Improving tinyos devel-
oper productivity with statecharts, 2009.

[13] M. Mura and M.G. Sami. Code generation from statecharts:
Simulation of wireless sensor networks. In 7/th EUROMI-
CRO Conf. on Digital System Design Architectures, Methods
and Tools (DSD), sept. 2008.

[14] Tomasz Naumowicz, Benjamin Schréter, and Jochen Schiller.
Prototyping a software factory for wireless sensor networks.
In Proc. of the 7th ACM Conf. on Embedded Networked
Sensor Systems, SenSys 09, NY, USA, 2009. ACM.

[15] Animesh Pathak et al. A compilation framework for macro-
programming networked sensors. In Proc. of the 3rd Conf.
on Distributed computing in sensor systems, DCOSS, 2007.

[16] Ryo Shimizu et al. Model driven development for rapid
prototyping and optimization of wireless sensor network
applications. In Proc. of the 2nd Workshop on Software Eng.
for Sensor Network Applications, SESENA 11, 2011.

[17] Amir Taherkordi et al. Programming sensor networks using
REMORA component model. In DCOSS ’10: Proc. of the
6th Conf. on Distributed Computing in Sensor Systems, Santa
Barbara, CA, USA, 2010. Springer.

[18] Nguyen Xuan Thang et al. Model driven development for
data-centric sensor network applications. In Proc. of the 9th
Conf. on Advances in Mobile Computing and Multimedia,
MoMM ’11, New York, NY, USA, 2011. ACM.

[19] Nguyen Xuan Thang and Kurt Geihs. Model-driven develop-
ment with optimization of non-functional constraints in sensor
network. In Proc. of the Workshop on Software Eng. for
Sensor Network Applications, SESENA ’10, 2010.

[20] E. Vicario. Static analysis and dynamic steering of time-
dependent systems. Software Engineering, IEEE Transactions
on, 27(8), aug 2001.

