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Abstract. Software engineering increasingly emphasizes variability by
developing families of products for a range of application contexts or user
requirements. ABS is a modeling language which supports variability in
the formal modeling of software by using feature selection to transform
a delta-oriented base model into a concrete product model. ABS also
supports deployment models, with a separation of concerns between exe-
cution cost and server capacity. This allows the model-based assessment
of deployment choices on a product’s quality of service. This paper com-
bines deployment models with the variability concepts of ABS, to model
deployment choices as features when designing a family of products.

1 Introduction

Variability is prevalent in modern software in order to satisfy a range of applica-
tion contexts or user requirements [34]. A software product line (SPL) realizes
this variability through a family of product variants (e.g., [29]). A specific prod-
uct is obtained by selecting features from a feature model [36]; these models
typically focus on the functionality and software quality attributes of different
features and products. To express variability in system design, features typically
take the form of architectural models, behavioral models, and test suites [35].
Architectural variability [16] focuses on the presence of component variants,
and can be described using, e.g., the Variability Modeling Language [27], UML
stereotypes [14], or (hierarchical) component models such as Koala [37]. In Delta
modeling [10,30,31], a set of deltas specifies modifications to a core product. ∆-
MontiArch applies delta modeling to architectural description [15]; a delta can
add or remove components, ports, and connections between components.

Whereas architectural models describe the logical organization of a system
in terms of components and their connections, we are interested in the physical
organization of software units on physical or virtual machines; we call this phys-
ical organization the deployment architecture. Varying deployment architectures
will perform the same computations, but with different cost and/or time spent.
Thus, a deployment architecture comprises specifications of execution costs and
available resources.
? Partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized
Services (http://www.envisage-project.eu).



ABS

Core ABS Real-Time
ABS

(Functional Variability)
Features + Deltas (Deployment Variability)

(Functional + Imperative)
Executable Models Time + Deployment

Fig. 1. ABS language extension.

Deployment 
architecture
variability

Resource cost
variability

Functional
variability

Fig. 2. The SPL variability space with
deployment variability.

This paper integrates deployment variability in SPL models such that dif-
ferent targeted deployment architectures may be taken into account early in
the design of the SPL. We aim at a reasonable orthogonality between func-
tional and deployment variability in the SPL model. The starting point for this
work is the abstract behavioral specification language ABS, which adds support
for variability to models in the kernel modeling language Core ABS [20]. ABS
is object-oriented to be easy to use for software developers; it is executable to
support code generation and (timed) validation of models; and it has a formal
semantics which enables the static analysis of models (e.g., the worst-case re-
source consumption can be derived for a model). ABS is particularly suitable for
our objective because (1) ABS supports SPL modeling based on deltas [9, 11],
and (2) ABS supports the modeling of deployment decisions based on the mod-
eling concept of deployment components [23] in Real-Time ABS [7]. Real-Time
ABS leverages resources and their dynamic management to the abstraction level
of software models. Fig. 1 shows how functional variability modeling in ABS
and time and deployment models in Real-Time ABS both extend Core ABS. Al-
though these extensions of ABS coexist, they have so far never been combined.
The purpose of this paper is to combine these two extensions in order to model
deployment variability, corresponding to the dotted area in Fig. 1.

Our approach to deployment variability for SPL models makes a separation
of concerns between cost and capacity which introduces two new variation points
in the variability space of ABS feature models (depicted in Fig. 2):

– Resource cost variability: These features determine the costs associated
with executing the SPL’s logical artifacts; and

– Deployment architecture variability: These features determine how the
logical artifacts are deployed on locations with different execution capacities.

The main contribution of the paper is an integration of delta models with de-
ployment architectures in ABS. This integration allows orthogonality between
functional and deployment variability, such that features expressing functional-
ity, resource cost and deployment variability are kept in different trees in the
ABS feature models. The integration is illustrated by variability patterns for
MapReduce [12], a programming model for highly parallelizable programs. Fur-
thermore, this integration allows ABS tools to be used to analyze functional
features with respect to deployment architecture during the early design stage
of SPLs.
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Paper overview. Sect. 2 motivates our work by an example of deployment vari-
ability. Sect. 3 presents modeling in the abstract behavioral specification lan-
guage ABS and Sect. 4 delta modeling and its realization in ABS. Sect. 5 com-
bines delta-oriented variability with deployment modeling, and discusses how to
extend a feature model with deployment variability. Sect. 6 revisits the example,
Sect. 7 discusses related work, and Sect. 8 concludes the paper.

2 Motivating Example

MapReduce [12] is a programming pattern for processing large data sets in two
stages; first the Map stage separates parallelizable jobs on distinct subsets of
data to produce intermediate results, then the Reduce stage merges the interme-
diate data into a final result. The initial and intermediate data are on the form
of key/value pairs, and the final result is a list of values per key. MapReduce
does not specify the computations done by the two stages or the distribution of
workloads across machines, making it a good abstract base model for SPLs.

Our example uses MapReduce to model product variants of a range of ser-
vices which inspect a set of documents. Individual products may implement,
e.g., Wordcount, which counts the occurrences of words in the given documents,
and Wordsearch, which searches for documents in which a given word occurs.
For simplicity, we assume that a service either provides the Wordcount or the
Wordsearch feature. The services are implemented on a cluster of computers,
using MapReduce.

To attract clients to the word count and word search services, freely available
demo versions offer the same functionality as the full versions, albeit with a lower
quality of service. When the services are deployed, the demo versions will run
on a few machines, whereas the full versions have access to the full power of
the cluster. Our model has three versions of each service: the purely functional
model, the model with full access to the cluster, and a model with restricted
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access to the cluster. This product family (see Fig. 3) is a running example in
the paper.

3 Behavioral and Deployment Modeling in ABS

The abstract behavioral specification language ABS targets the executable de-
sign of distributed object-oriented systems. It has a formally defined kernel called
Core ABS [20]. ABS is based on concurrent object groups (COGs), akin to con-
current objects [8,21], Actors [1], and Erlang processes [5]. COGs support inter-
leaved concurrency based on guarded commands. ABS has a functional and an
imperative layer, combined with a Java-like syntax. Real-Time ABS [7] extends
Core ABS models with (dense) time; in this paper we do not specify execution
time directly but rather observe time by measurements of the executing model.

ABS has a functional layer with algebraic data types such as the empty type
Unit, booleans Bool, integers Int; parametric data types such as sets Set<A> and
maps Map<A, B> (for type parameters A and B); and functions over values of
these data types, with support for pattern matching. The modeler can define
additional types to succinctly express data structures of the problem domain.

The imperative layer of ABS describes side-effectful computation, concur-
rency, communication and synchronization. ABS objects are active in the sense
that their run method, if defined, gets called upon creation. Communication
and synchronization are decoupled: Communication is based on asynchronous
method calls. After executing f=o!m(e), which assigns the call to a future vari-
able f, the caller proceeds execution without blocking while m(e) executes in the
context of o. Two operations on future variables control synchronization in ABS.
First, the statement await f? suspends the active process unless a return value
from the call associated with f has arrived, allowing other processes in the same
COG to execute. Second, the return value is retrieved by the expression f.get,
which blocks all execution in the COG until the return value is available. Inside
a COG, Core ABS also supports standard synchronous method calls o.m(e).

A COG can have at most one active process, executing in one of the objects
of the COG. Scheduling is cooperative via await g statements, which suspend
the current process until g (a condition over object or future variable state)
becomes true. The remaining statements of ABS (assignment, object creation,
conditionals and loops) are designed to be familiar to a Java programmer.

Deployment Modeling. One purpose of describing deployment in a mod-
eling language is to differentiate execution time based on where the execution
takes place, i.e., the model should express how the execution time varies with
the available capacity of the chosen deployment architecture. For this purpose,
Real-Time ABS extends Core ABS with primitives to describe deployment archi-
tectures which express how distributed systems are mapped on physical and/or
virtual media with many locations. Real-Time ABS lifts deployment architec-
tures to the abstraction level of the modeling language, where the physical or
virtual media are represented by deployment components [22].
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A deployment component is part of the model’s deployment architecture, on
which a number of COGs are deployed. Deployment components are first-class
citizens and they support a number of methods for load monitoring and load
balancing purposes (cf. [22]). Each deployment component has an execution ca-
pacity, which is the amount of resources available per accounting period. By
default, all objects execute in a default (root) environment with unrestricted
capacity. Other deployment components with restricted capacities may be cre-
ated to capture different deployment architectures. COGs are created on the
same deployment component as their creator by default; a different deployment
component may be selected by an optional deployment annotation [DC: dc] to
object creation, for a deployment component dc.

The available resource capacity of a deployment component determines the
amount of computation which may occur in the objects deployed on that de-
ployment component. Objects allocated to the deployment component compete
for the shared resources in order to execute, and they may execute until the
deployment component runs out of resources or they are otherwise blocked. For
the case of CPU resources, the resources of the deployment component define
its capacity inside an accounting period, after which the resources are renewed.

The resource consumption of executing statements in the Real-Time ABS
model is expressed by means of adding a cost annotation [Cost: e] to any state-
ment. It is the responsibility of the modeler to specify appropriate resource costs.
A behavioral model may be gradually transformed to provide more realistic
resource-sensitive behavior by inserting more fine-grained cost annotations. The
automated static analysis tool COSTABS [2] can compute a worst-case approx-
imation of resource consumption, based on static analysis techniques. However,
the modeler may also want to capture normative constraints on resource con-
sumption, such as resource limitations, at an abstract level; these can be made
explicit in the model during the very early stages of the system design. To this
end, cost annotations may be used by the modeler to abstractly represent the
cost of some computation which is not fully specified in the model.

4 Delta-Oriented Variability in ABS

This section describes how SPLs are modeled in ABS. ABS includes a delta-
oriented framework for variability [9,11]. Fig. 4 depicts a delta-oriented variabil-
ity model where a feature model F with orthogonal variability [18] is represented
as two trees that hierarchically structure the set of features of this model. Sets
of features from the feature model F are linked to sets of delta modifications
from the delta model ∆, which apply to the common base model P to produce
different product line configurations C, C ′ and C ′, and finally a specific product
ρ is extracted from the product line configuration C.

Feature model. A feature model in ABS is represented textually as a for-
est of nested features where each tree structures the hierarchical dependencies
between related features, and each feature in a tree may have a collection of
Boolean or integer attributes. The ABS feature model can also express other
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Fig. 4. A graphical representation of a Delta-Oriented variability model.

cross-tree dependencies, such as mandatory and optional sub-features, and mu-
tually exclusive features. The group keyword is used to specify the sub-features
of a feature; the oneof keyword means that exactly one of the sub-features must
be selected in the created product line, the range of values associated to an
attribute specify the values in which an attribute can be instantiated when an
specify product is generated. For the full details, we refer the reader to [9, 11].

Example 1. In the functional feature model of the MapReduce example from
Section 2, a tree with a root Calculations offers two alternative and mutually
exclusive features that can be selected to express that a specific product supports
counting words or searching for words.

root Calculations { group oneof { Wordcount, Wordsearch }}

In addition ABS allows a feature model with multiple roots (hence, multiple
trees) to describe orthogonal variability [18], which is useful for expressing unre-
lated functional and other features (e.g., features related to quality of service).

Delta model. The concept of delta modeling was introduced by Schaefer et
al. [6,31–33] as a modeling and programming language approach for SPLs. This
approach aims at automatically generating software products for a given valid
collection of features, providing flexible and modular techniques to build differ-
ent products that share functionality or code. In delta-oriented programming,
application conditions over the set of features and their attributes, are associated
with units of program modifications called delta modules. These delta modules
may add, remove, or otherwise modify code. The implementation of an SPL in
delta-oriented programming is divided into a common core module and a set of
delta modules. The core module consists of classes that implement a complete
product of the SPL. Delta modules describe how to change the core module to
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obtain new products. The choice of which delta modules to apply is based on
the selection of desired features for the final product.

Technically, delta modules have a unique identifier, a list of parameters, and a
body containing a sequence of class and interface modifiers. Such a modification
can add a class or interface declaration, modify an existing class or interface,
or remove a class or interface. The modifications can occur within a class or
interface body, and modifier code can refer to the original method by using the
original() keyword. Delta modules in ABS can be parametrized by attribute
values to enable the application of a single delta in more than one context.

Product line configuration. The product line configuration links feature
models with delta modules to provide a complete specification of the variability
in an ABS product line. A product line configuration consists of the set of features
of the product line and a set of delta clauses. Each delta clause names a delta
module and specifies the conditions required for its application, called application
conditions. A partial ordering on delta modules constrains the order in which
delta modules can be applied to the core module.

Specific product. A product selection clause generates a specific product
from an ABS product line. It states which features are to be included in the
product and specifies concrete values for their attributes. A product selection
is checked against the feature model for validity. The product selection clause
is used by the product line configuration to guide the application of the delta
modules during the generation of the final product.

Generated final product. Given a Core ABS program P , a set of delta
modules ∆, a product line configuration C, and a feature model F (as depicted
in Fig. 4), the final product ρ, which will be a Core ABS program, is derived as
follows: First check that the selection of features for ρ satisfies the constraints
imposed by the feature model F ; then select the delta modules from ∆ with a
valid application condition with respect to ρ; and finally apply the delta modules
to the core program P in some order respecting the partial order described in
C, replacing delta parameters in the code with the literal values supplied by the
feature.

5 Deployment Variability in ABS

Feature models usually describe functional variability in a software product line.
This section discusses lifting deployment variability to ABS feature models and
its interaction with functional variability. Our approach aims to establish or-
thogonality between the functional and deployment aspects in an SPL model in
order to maintain multiple axes of variability (see Fig. 2). The further separa-
tion of concerns between cost and capacity in the deployment models of ABS is
reflected in the feature models as well.

Thus, variability in a deployment-aware SPL comprises these variation points
in the feature models:
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Functional variability: These features determine the functional behavior of a
product and are used as in standard SPL engineering.

Resource cost variability: These features describe the choice of how the in-
curred resource cost is estimated during execution of the model. The basic fea-
ture is the no cost feature, typically selected for functional analysis of the SPL
model. Other cost models are fixed-cost for selected jobs (similar to costs in a
basic queuing network or simulation model; see, e.g., [19]), and data-sensitive
costs. These can be either measured, real cost for selected jobs or worst-case
approximations (which may depend on data flow as well as control flow). All of
these can be expressed via cost annotations.

Deployment architecture variability: These features determine how the log-
ical artifacts of the model are mapped to a specific deployment architecture,
which determines the execution capacity of the different locations on which the
logical artefacts execute. The basic feature is the undeployed feature which does
not impose any capacity restrictions on the execution. This feature is typically
selected together with no cost during functional analysis and testing. When an-
alyzing non-functional properties, features describe how selected parts of the
logical architecture are deployed on deployment components with restricted ca-
pacity, either statically or (for virtualized deployment) dynamically.

Example 2. We extend the feature model of Example 1 with a Resources tree
for resource costs, and a Deployments tree for deployment architecture. The
Resources root has the basic feature NoCost, the feature FixedCost for a ba-
sic data-independent cost model specified in the attribute cost, the feature
WorstcaseCost for a worst-case cost model in terms of the size of the input files,
and MeasuredCost for using the actual incurred cost measured during execution
of the model. The Deployments root has three alternative features related to
the number of available machines in the physical deployment architecture; the
capacity of each machine is specified by the attribute capacity.

root Resources {
group oneof {
NoCost,
FixedCost { Int cost in [ 0 .. 10000 ] ; },
WorstcaseCost,
MeasuredCost

}
}
root Deployments {
group oneof {
NoDeploymentScenario,
UnlimitedMachines { Int capacity in [ 0 .. 10000 ] ; },
LimitedMachines { Int capacity in [ 0 .. 10000 ] ; Int machinelimit in [ 0 .. 100 ] ; }

}
}
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// These definitions to be changed in delta modifications
type InKeyType = String; // filename
type InValueType = List<String>; // file contents
type OutKeyType = String; // word
type OutValueType = Int; // count

interface MapReduce {
List<Pair<OutKeyType, List<OutValueType>>>

mapReduce(List<Pair<InKeyType, InValueType>> docs); // invoked by client
Unit finished(Worker w); // invoked by workers when finished with 1 task

}

interface IMap { // invoked by MapReduce controller
List<Pair<OutKeyType, OutValueType>>
invokeMap(InKeyType key, InValueType value);

}

interface IReduce { // invoked by MapReduce controller
List<OutValueType>
invokeReduce(OutKeyType key, List<OutValueType> value);

}

interface Worker extends IMap, IReduce { }

Fig. 5. Interfaces of the base model of the MapReduce example in ABS.

6 Example: Product Variability in the MapReduce
Example

This section describes the implementation of a generic MapReduce framework
in ABS and its adaptation to different products as described in Section 2. It
will become apparent that a product that is implemented according to best
practices for object-oriented software (i.e., decomposing functionality, methods
implementing one task only, and the careful definition of datatypes) also makes
the product well-suited as a base product for a software product line.

6.1 Commonalities in the ABS Base Product

Fig. 5 shows the interfaces for the main MapReduce object and for the Worker
objects which will carry out the computations in parallel. The computation is
started by calling the mapReduce method with a list of (key, value) pairs. The
main object will then create a number of worker objects, call invokeMap on these
objects, gather and collate the results of the mapping phase, call invokeReduce
on the workers and collate and return the final result.

The base product in our example implements a word count function (com-
puting word occurrences over a list of files), without a resource or deployment
model. Worker objects are reused from a pool, but there is no bound on the
number of workers created. Workers add themselves back to the pool by calling
finished.

Figure 6 shows part of the worker implementation of the base product (i.e., a
Wordcount product without any cost model). The invokeReduce method sets up
the result, calls a private method reduce which emits intermediate results using
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class Worker(MapReduce master) implements Worker {
List<OutValueType> reduceResults = Nil;

List<OutValueType> invokeReduce(OutKeyType key, List<OutValueType> value) {
reduceResults = Nil;
this.reduce(key, value);
List<OutValueType> result = reduceResults;
reduceResults = Nil;
master!finished(this);
return result;

}

Unit emitReduceResult(OutValueType value) {
reduceResults = Cons(value, reduceResults);

}

// variation point for functional model
Unit reduce(OutKeyType key, List<OutValueType> value) {
OutValueType result = 0;
... // sum up value list into result variable ...
this.emitReduceResult(result);

}
}

Fig. 6. The reduce part of the Wordcount example in the Worker class.

the method emitReduceResult. The reduce method in Fig. 6 is equivalent to the
one shown in the original MapReduce paper [12]. The mapping functions of the
worker objects are implemented in the same way.

6.2 Variability in the ABS Product Line

To change the functional feature of the model from computing word counts to
computing word search, some parts of the model need to be altered via delta
application. The same applies when varying the deployment and cost model, as
explained in Section 5. These variation points turn out to be orthogonal and can
be modified independently of each other.

In the example, the methods to be modified by deltas are not public; i.e., they
are not part of the published interface of the classes comprising the base model.
This appears to be a recurring pattern: public methods like invokeReduce of Fig. 6
interact with the outside world, gather and decompose data for computation and
returning. If the modeler factors out computation into private methods with only
one single task to perform (like reduce in Fig. 6), these methods can be cleanly
replaced in deltas, without imposing constraints on the implementation. This
suggests that clean object-oriented code will in general be likely to be amenable
to delta-oriented modification.

Functional variability. The following delta shows a delta fragment that
modifies the functionality of the base model:

delta DOccurrences;
modifies type OutValueType = String; // Change the method signatures
modifies class Worker {
modifies Unit map(InKeyType key, InValueType value) {
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... // change non−public map method to compute occurrences
}
modifies Unit reduce(OutKeyType key, List<OutValueType> value) {
... // change non−public reduce method to compute occurrences

}
}

By modifying the type synonyms InKeyType, InValueType, OutKeyType and
OutValueType from the base model, we can change the data types and method
signatures of the model without having to change any code in the MapReduce
class. Modifying the methods map and reduce of the Worker class changes the
computation performed by the product. The new map and reduce methods use
emitMapResult and emitReduceResult as in the base model; hence they do not
need to care about invocation or return value handling protocols.

Resource cost variability. Costs are incurred during (and because of)
computational activity. This means that cost model and functional model are
related. However, the two aspects can be decoupled

cleanly via the original() call, which we use to associate the given cost with
the original code. Care must be taken in the productline definition to ensure
that any deltas incurring costs are applied after deltas modifying functionality;
otherwise, the cost association would be overwritten.

delta DFixedCost (Int cost);
modifies class Worker {
modifies Unit emitMapResult(OutKeyType key, OutValueType value) {
[Cost: cost] original(key, value);

}
modifies Unit emitReduceResult(OutValueType value) {
[Cost: cost] original(value);

}
}

This FixedCost delta assigns a cost (given as a delta attribute) to each com-
putation of an intermediate result; the feature attribute is passed in as a delta
parameter. In general, costs are introduced into MapReduce by wrapping the
methods invokeMap and invokeReduce for assigning costs to starting a compu-
tation step, and by modifying emitMapresult and emitReduceresult for assigning
costs to the production of a result. Figure 6 shows where these methods are
invoked.

An alternative approach to adding resource costs via hooks is to use the ABS
original() call, wrapping the original map, emitMapresult etc. methods with costs.
This approach makes the functional model simpler, but leads to a more com-
plicated product line configuration since the correct order of delta application
must be specified in that case.

Deployment architecture variability. Deployment architecture, i.e., de-
cisions on how many workers to create and how many resources to supply them
with, is implemented in the MapReduce class. As mentioned, this class manages
a pool of Worker instances which is by default of unbounded size. To change this
behavior, the modeler implements a delta that overrides a method getWorker
(and also the method finished of the MapReduce implementation in case the new
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productline MapReduceSPL;

features
Wordcount, Wordsearch, // Functional features
NoCost, FixedCost, WorstCaseCost, MeasuredCost, // Resource cost features
NoDeploymentScenario, UnlimitedMachines, LimitedMachines; // Deployment architectures

delta DOccurrences when Wordsearch;
delta DFixedCost(Cost.cost) after DOccurrences when Cost;
delta DUnboundedDeployment(UnlimitedMachines.capacity) when UnlimitedMachines;
delta DBoundedDeployment(LimitedMachines.capacity, LimitedMachines.machinelimit)

when LimitedMachines;
...

Fig. 7. Product line configuration for the MapReduce example in ABS.

product WordcountModel (Wordcount, NoCost, NoDeploymentScenario);
product WordcountFull (Wordcount, Cost{cost=10}, UnlimitedMachines{capacity=20});
product WordcountDemo (Wordcount, Cost{cost=10},

LimitedMachines{capacity=20, machinelimit=2});

product WordsearchModel (Wordsearch, NoCost, NoDeploymentScenario);
product WordsearchFull (Wordsearch, Cost{cost=10}, UnlimitedMachines{capacity=20});
product WordsearchDemo (Wordsearch, Cost{cost=10},

LimitedMachines{capacity=20, machinelimit=2});

Fig. 8. Specifying Products for the MapReduce example in ABS.

getWorker method does not use the resource pool of the base model). The capac-
ity and number of deployment components can be adjusted via delta parameters:

delta DBoundedDeployment (Int capacity, Int maxWorkers);
modifies class MapReduce {
... // adjust behavior of resource pool and capacities of created deployment components

}

The product line configuration. The feature model presented in Section 5
extends the model of Section 2 with resource cost variability, resulting in 14
different products. Fig. 7 shows part of the product line configuration and Fig. 8
shows the specification of some of the derivable products.

In the deployment components of the deployment architecture features, ca-
pacity is defined by the amount of resource costs that can be processed per
accounting period (in terms of the dense time semantics of execution in Real-
Time ABS). When the base model is extended with features for deployment
architecture and resource cost, the load on the individual deployment compo-
nents, defined as the actual incurred cost per accounting period, can be recorded
and visualized.

We illustrate how deployment variability for products can be validated using
the simulation tool of ABS, by comparing the performance of two different de-
ployments of the Wordcount product, varying the number of available machines
between 5 (the “Demo” version) and 20 (the “Full” version), but keeping the cost
model, input data and computation model constant. The graphs in Fig. 9 shows
the total load of all machines over simulated time for the two products. The
figure shows two typical instances of a typical MapReduce workload; first, the
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map processes execute until they are finished, then the reduce processes execute.
The start of the reduce phase can be observed in the graph of Fig. 9 as the sec-
ond spike in processing activity. It can be seen that the demo version takes over
twice as much simulated time to complete its execution, while the full version
completes its execution earlier by incurring a load that is higher than for the
demo version (while still decreasing as the map processes terminate).

Similar qualitative investigations can be performed regarding the influence
of varying cost models (e.g., worst-case vs. average cost) and more involved
deployment strategies.

7 Related Work

The inherent compositionality of the concurrency model considered in this paper
allows objects to be naturally distributed on different locations, because only an
object’s local state is needed to execute its methods. In previous work [4,22,23],
the authors have introduced deployment components as a modeling concept to
captures restricted resources shared between a group of concurrent objects, and
shown how components with parametric resources may be used to capture a
model’s behavior for different assumptions about the available resources. The
formal details of this approach are given in [23]; two larger case studies on
virtualized systems deployed on the cloud are presented in [3,24]. Our approach
to deployment modeling would be a natural fit for resource-sensitive deployment
in other Actor-based approaches, e.g., [5, 17].

Deployment variability is not considered in the recent software diversity sur-
vey [35], but it has been studied in the context of feature models. For example,
a feature model that captures the architectural and technological variability of
multilayer applications is described in [13] together with an associated model-
driven development process. In contrast our paper considers a much simpler
feature model, but it is integrated in a full SPL framework and explicitly linked
to executable models which can be compared by tool-based analysis. Without
considering variability, a platform ontology and modeling framework based on
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description logic is proposed by [38], which can be used to automatically con-
figure various reusable concrete platforms that can be later be integrated with
a platform-independent model using the Model Driven Architecture approach.
We follow a similar approach based on the extending a purely functional model
with deployment features, but our framework is based on simpler concepts which
does not introduce the overhead of description logic. In the context of QoS vari-
ability, [25] study a modeling and analysis framework for testing the QoS of an
orchestration before deployment to determine realistic Service Level Agreement
contracts; their analysis uses probabilistic model of QoS. Our work similarly al-
lows the model-based comparison of QoS variability, but focuses on deployment
architecture and processing capacity rather than orchestration.

The MapReduce programming pattern which is the basis for the example
of this paper, has been formalized and studied from different perspectives. [39]
develop a CSP model of MapReduce, with a focus on the correctness of the
communication between the processes. [26] develops a rigorous description of
MapReduce using Haskell, resulting in an executable specification of MapRe-
duce. [28] formalizes an abstract model of MapReduce using the proof assistant
Coq, and use this formalization to verify JML annotations of MapReduce appli-
cations. However, none of these works focus on deployment strategies or relate
MapReduce to deployment variability in SPLs.

8 Conclusion

Software today is increasingly often developed as a range of products for devices
with restricted resource capacity or for virtualized utility computing. For an
SPL targeting such platforms, the deployment of different products in the range
should also be considered as a variation point in the SPL.

This paper integrates explicit resource restricted deployment scenarios into a
formal modeling language for SPL engineering. This integration is based on delta
models to systematize the derivation of product variants, and demonstrated in
the ABS modeling language. The proposed integration emphasizes orthogonality
between functional features, resource cost features, and deployment architecture
features, to facilitate finding the best match between functional features and a
target deployment architecture for a specific product. The supported analysis
allows the validation of deployment decisions for specific products in the SPL,
which may entail a refinement of the feature model. Resource cost variability
can be exploited to compare product performance under different cost models
such as fixed cost, measured simulation cost, and worst-case cost.

The approach is demonstrated on an example using the MapReduce program-
ming pattern as its common base product, and used to compare the performance
of full versions to restricted demo versions of product variants. A restriction of
our work is the concrete semantics which makes it difficult to reason about
whole product lines, requiring a per-product approach to validation. This could
be lifted by using a symbolic semantics and applying symbolic execution tech-
niques to analyze the deployment sensitive SPL models, allowing the analysis to
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be lifted from concrete deployment architectures for specific products to a more
generalized analysis.
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