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Abstract. The Abstract Behavioral Specification (ABS) language is a
formal, executable, object-oriented, concurrent modeling language in-
tended for behavioral modeling of complex software systems that exhibit
a high degree of variation, such as software product lines. We give an
overview of the architectural aspects of ABS: a feature-driven develop-
ment workflow, a formal notion of deployment components for specify-
ing environmental constraints, and a dynamic component model that
is integrated into the language. We employ an industrial case study to
demonstrate how the various aspects work together in practice.

1 Introduction

This is the third in a series of reports which together give a comprehensive
overview of the possibilities and use cases of the Abstract Behavioral Specifica-
tion (ABS) language developed within the FP7 EU project HATS (for “Highly
Adaptable and Trustworthy Software using Formal Models”). Paper [16] de-
scribes the core part of ABS and its formal semantics while the tutorial [7]
is about the modeling of variability in ABS using features and deltas. Delta-
oriented programming [30] is a feature-oriented code reuse concept that is em-
ployed in HATS ABS as an alternative to traditional inheritance-based reuse.

The current paper is focussed on architectural aspects of modeling with ABS.
A very brief summary of the main ideas of ABS is contained in Sect. 2 below.

In Sect. 3 we give a step-by-step guide on how to create a software product
line in ABS from scratch using delta modeling. We make use of abstract delta
modeling [8], dealing with conflicts explicitly. In Sect. 4 we turn to the question
of how the deployment architecture of a system can be represented in a suitably
platform-independent manner at the level of abstract models [17]. Sect. 5 reports
? Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).



on the component model used in HATS which makes it possible to align ABS
models with architectural languages and opens the possibility of dynamic recon-
figuration [26]. Finally, in Sect. 6 we tell—in the context of an industrial case
study [33]—how the concepts discussed in this paper were shaped by application
concerns and what the industrial prospects of HATS ABS are. This includes an
account on how to unit test ABS models using the ABSUnit framework [?].

2 Abstract Behavioral Specification

Delta Modeling
Languages:
µTVL, DML, CL, PSL

Component Model

Deployment Components: Real-Time ABS

Local Contracts, Assertions

Syntactic Modules

Asynchronous Communication

Concurrent Object Groups (COGs)

Imperative Language

Object Model

Pure Functional Programs

Algebraic (Parametric) Data Types

Fig. 1. Layered Architecture of ABS

The ABS language is de-
signed for formal modeling
and specification of concur-
rent, component-based sys-
tems at a level that ab-
stracts away from implemen-
tation details, but retains es-
sential behavioral and even
deployment aspects. ABS fol-
lows a layered approach (see
Fig. 1): at the base are func-
tional abstractions around a
standard notion of parametric
algebraic data types. Next we
have a OO-imperative layer
similar to (but much simpler
than) Java. The concurrency
model of ABS is two-tiered:
at the lower level, so called
COGs (Concurrent Object Groups) encapsulate synchronous, multi-threaded,
shared state computation on a single processor with cooperative scheduling. On
top of this is an actor based model with asynchronous calls, message passing,
active waiting, and future types. A syntactic module concept and assertions (in-
cluding pluggable type systems) completes what we call core ABS. This language
is described in detail in [16].

ABS classes do not support code inheritance and don’t define types. Man-
agement of code reuse is, instead, realized by code deltas, described in [7]. These
are named entities that describe the code changes associated to realization of
new features. The result is a separation of concerns between architecural/de-
sign issues and algorithmic/data type aspects. It helps early prototyping and
avoids a disconnect between a system’s architecture and its implementation. In
Sect. 3 we present the delta modeling workflow and demonstrate how it is used
to implement software with a high degree of variability such as product lines.

Model-based approaches such as HATS face the challenge that, to be realistic,
software models must address deployment issues, such as real-time requirements,



capacity restrictions, latency, etc. Real-time ABS, introduced in Sect. 4, uses an
additional language layer called deployment component to achieve this.

To achieve flexible dynamic behavior, but also to structure and encapsulate
the dependencies in a software system, a formal notion of logical component is
essential. To this end, ABS features a component model, which is orthogonal to
delta modeling and presented in Sect. 5. Whereas deployment components are
used to identify the deployment structure of the modeled system in terms of
locations, logical components are used to identify the logical structure of the
system in terms of units of behavior. In particular, a logical component may be
distributed over several deployment components and several logical components
may be (partly) located in the same deployment component.

We stress that all ABS language constructs have a formal semantics, details of
which can be found in the technical deliverables of the HATS project [11–13]. In
addition, ABS has been designed with an eye on analysability. A wide variety of
tools for simulation, testing, resource estimation, safety analysis, and verification
of ABS models are available.

3 The Delta Modeling Workflow

Variability at the level of abstract behavioral specifications (or source code) is
represented in the ABS using the concept of delta modeling. Delta modeling
was introduced by Schaefer et al. [29,30] as a novel modeling and programming
language approach for software-based product lines. It can be seen as an alterna-
tive to feature-oriented programming [3]. Both approaches aim at automatically
generating software products for a given valid collection of features, providing
flexible and modular techniques to build different products that share functional-
ity or code. In this section, we describe briefly how delta modeling is instantiated
in ABS to represent software product lines. A more detailed account is [7]. We
also introduce the delta modeling workflow for ABS, a step-by-step guide to
building a product line, which leverages the flexibility of delta modeling.

3.1 Delta Modeling in ABS

Variability of software product lines at the requirements level is predominantly
represented in terms of product features, where a feature is a user-visible product
characteristic or an increment to functionality. A feature model [20] provides
the set of possible product variants by associating them with the set of realized
features. Features at this modeling level are merely names.

Delta modeling is a flexible, yet modular approach to implement different
product variants by reusable artifacts. In delta modeling, the realization of a
software product line is divided into a core module and a set of delta modules.
The core module implements the functionality common to all products of the
software product line. Delta modules encapsulate modifications to the core prod-
uct in order to realize other products. The modifications can include additions



and removals of product entities and modifications of entities that are hierar-
chically composed. A particular product variant can be automatically derived
by applying the modifications of a selected subset of the given delta modules to
the core product. Which delta modules have to be applied for a specific product
variant is based on the selection of desired features for this product variant. In
order to automate this selection, each delta is associated with an application
condition that is a Boolean constraint over the features in the feature module.
If the constraint is satisfied for a specific feature selection, the respective delta
has to be applied to generate the associated product variant. To avoid or resolve
conflicts when two delta modules modify the same product entity in an incom-
patible manner, delta module application can be partially ordered. This also
ensures that for any feature selection a uniquely defined product is generated.

The ABS incarnation of delta modeling is based on four languages (µTVL,
DML, CL, PSL) which are defined on top of core ABS (see Fig. 1). The feature
description language µTVL is used to describe the variability of a product line in
terms of features and their attributes. At this level of abstraction, a feature is a
name representing user-visible system functionality. Attributes represent micro-
variability within features. µTVL is a textual description language for feature
models and intended as a basis for other, e.g., graphical modeling formalisms.

The delta modeling language DML is used to specify delta modules contain-
ing modifications of a core ABS model. A delta module in ABS can add and
remove classes and add as well as remove interfaces that are implemented by a
class. Additionally, a delta module can modify the internal structure of classes
by adding and removing fields and methods. Methods can also be modified by
overriding the method body or by wrapping the previous implementation of the
method using the original() call. Deltas can also be parameterized by specific
values. Parameters are instantiated with concrete values during product gener-
ation, e.g., with the value that is set for a feature attribute.

The configuration language CL links µTVL feature models with the DML
delta modules that implement the corresponding behavioral modifications. A CL
specification provides application conditions for delta modules. They determine
to which feature configurations modules are applied to in a when clause and
provide an order to resolve conflicts between deltas modifying the same model
entities The application ordering is given in after clauses attached to deltas
stating that the delta must be applied after the given deltas if these are also
applied during product generation.

The product selection language PSL is used to define the actual product of an
ABS product line. A PSL script corresponds to a particular product variant and
consists of two parts, namely, a specification of the features and their attributes
selected for a product and an initialization block, which is often merely a call
to an appropriate main method, even though it may contain configuration code.
To generate the product specified by the PSL script, all deltas with a valid
application condition for the given feature selection are applied to the core ABS
model in some order compliant with the order specified in the CL script. Finally,
the initialization block is added to the core program.



3.2 Delta Modeling Workflow in ABS

Abstract Delta Modeling [8, 9] lends itself particularly well to a systematic de-
velopment workflow for software product lines. One such workflow, dubbed delta
modeling workflow [?,15], was adapted to ABS. In the following we describe the
workflow specifically with ABS in mind, which has not been done before. It is
also used in the case study in Sect. 6.

The workflow gives step-by-step instructions for development of a software
product line from scratch, directing developers to satisfy local constraints (more
formally given in [15]) to guarantee desirable properties for the whole product
line. These properties are described in Sect. 3.3.
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Fig. 2. Overview of the development workflow

A product line should be developed based on a product line specification,
consisting of a feature model (which should include at least a subfeature hierar-
chy), and either formal or informal descriptions of each feature. When we start
following the workflow, we assume that such a specification exists.

Briefly, features are implemented as a linear extension of the subfeature hier-
archy. Base features are implemented first, subfeatures later, with one delta for
each feature. Then, for every set of implemented features that should interact,
but do not, we implement that interaction with a delta. Next, for every two
deltas whose implementations are in conflict, a conflict resolving delta is written
to resolve that issue. Fig. 2 shows a flow-chart that summarizes this process.

It is often suitable to put code common to all products into the core product.
In the case of ABS, this means at least the following:

class Main { Unit run() {} }

{ new Main(); }
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Fig. 3. Feature model of the Editor product line

We start with a Main class with an empty run method. The second line creates a
new Main instance, implicitly calling the run method, which will later be modified
by deltas. It is possible to put mandatory features into the core product, but it
is recommended that all features are implemented by deltas, as this makes the
product line more robust to evolution [31], and promotes separation of concerns.

Also, we begin with a minimal ABS product line configuration: the list of
features and the list of desired products, which can be empty.

productline name {

features d1, d2, . . . , dn; }

In the following workflow description, we will use a subset of the Editor product
line example, a complete version of which may be found in [9]. It describes a set
of code editor widgets, as may be found in integrated development environments.
The feature model of the Editor product line is shown in Fig. 3. Now we walk
through the Delta Modeling Workflow depicted in Fig. 2.

Feature left to implement? In this stage of the workflow, we choose the
next feature to implement. Essentially we walk through the subfeature hierarchy
of the feature model in a topological order, i.e., base features first, subfeatures
later. If all features have been implemented, we are finished.

For the example, we would have to start with the Editor feature. Any of the
three features on the second level may be chosen next.

Implement Feature with New Delta Having chosen a feature f , we now
write a “feature delta” df to implement it:

delta df { ... }

The delta may add, remove or modify any classes and methods necessary to real-
ize the functionality of f , while preserving the functionality of all superfeatures.
The developer only has to consider the feature-local code: the core product and
the deltas implementing superfeatures of f . We now show the four feature deltas
of the Editor product line (we leave out some details for the sake of brevity):



delta D_Editor {

adds class Model { ... }

adds class Font {

Unit setColor(Color c) { ... }

Color getColor() { ... }

Unit setUnderlined(bool u) { ... }

bool getUnderlined() { ... }

}

adds class Editor { Model model;

{ model = new Model(); ... }

Model getChar(int c) {

return model.getChar(c);

}

Font getFont(int c) {

return new Font();

} }

modifies class Main {

modifies Unit run() {

new Editor();

} } }

delta D_Printing {

modifies class Editor {

adds Unit print() {

// print the plain text
} } }

delta D_SyntaxHighlighting {

adds class Highlighter(Model m) {

Model model;

{ model = m; }

Color getColor(int c) { ... }

}

modifies class Editor {

modifies getFont(int c) {

Font f = D_Editor.original(c);
Highlighter h =

new Highlighter(getModel());

f.setColor(h.getColor(c));

return f;

}

}

}

delta D_ErrorChecking {

modifies class Editor {

modifies Font getFont(int c) {

Font f = D_Editor.original(c);
f.setUnderlined(

getModel().isError(c));

return f;

} }

}

Finally, we add the following line to the ABS product line configuration:

delta df when f after ds;

where ds is the delta implementing the superfeature of f . If f has no superfeature,
the after clause may be omitted. Our example requires the following product
line configuration:

productline Editor {

features Editor, Printing, SyntaxHighlighting, ErrorChecking;

delta D_Editor when Editor;

delta D_Printing when Printing after D_Editor;

delta D_SyntaxHighlighting when SyntaxHighlighting after D_Editor;

delta D_ErrorChecking when ErrorChecking after D_Editor; }

Interaction to Implement At the feature modeling and specification level, two
features f and g may be independently realizable, but require extra functionality
when both are selected. This behavior is not implemented by the feature deltas,
so a new delta needs to be created. In our example, this is the case for the



features Printing and Syntax Highlighting. When printing, we would like the
syntax highlighting colors to be used.

Implement Interaction The new delta df,g must implement the required in-
teraction without breaking the features f and g or their superfeatures. It may
change anything introduced by feature deltas df and dg. When overwriting meth-
ods, it may also access the original methods using the syntax df.original() and
dg.original(). In our example:

delta D_Printing_SyntaxHighlighting {

modifies class Editor {

modifies Unit print() {

// print as before, but use colors of D_SyntaxHighlighting.font(c)
} } }

Then we add the following to the ABS product line specification:

delta df,g when f && g after df, dg;

In our example:

delta D_Printing_SyntaxHighlighting when Printing && SyntaxHighlighting

after D_Printing, D_SyntaxHighlighting;

This may be generalized to interaction between more than two features.

Conflict to Resolve? By adding delta df , deltas df,g (for different g) and
conflict resolving deltas introduced earlier in the current iteration, we may have
introduced an implementation conflict: two deltas d1, d2 that are independent,
but modify the same method in a different way. In our example, this is the case
for D_SyntaxHighlighting and D_ErrorChecking, as they both modify the font

method in a different way, and are not ordered in the product line configuration.
For each such conflict, we write a delta to resolve it.

Resolve Conflict The resolving delta d1,2 must overwrite the methods causing
the conflict, while not breaking the features implemented by d1, d2, or their su-
perfeatures. Typically, d1,2 invokes d1.original() and d2.original() to combine
the functionality of the conflicting deltas. In our example:

delta D_SyntaxHighlighting_ErrorChecking {

modifies class Editor {

modifies Font getFont(int c) {

Font result = D_Editor.original(c);
result.setColor(D_SyntaxHighlighting.original(c).getColor());
result.setUnderlined(D_ErrorChecking.original(c).getUnderlined());
return result;

} } }



We add the following to the ABS product line specification:

delta d1,2 when (λ(d1)) && (λ(d2)) after d1, d2;

where λ(d) is the when clause of delta d. In our example:

delta D_SyntaxHighlighting_ErrorChecking when (SyntaxHighlighting) &&

(ErrorChecking) after D_SyntaxHighlighting, D_ErrorChecking;

3.3 Discussion

The workflow has some useful properties, which we briefly explain. Any feature,
as well as any conflict resolution and feature interaction, can be developed inde-
pendently of others that are conceptually unrelated to it. For example, all feature
deltas in our example could be developed at the same time and in isolation. As
could the interaction implementing delta and the conflict resolving delta.

Then there are various properties that are guaranteed in the product lines
resulting from this workflow. There is a minimum of code duplication. Every
delta implements some specific functionality and every product that needs that
functionality employs the same delta to use it. And when two features are con-
ceptually unrelated, two unordered deltas are developed for them. This means
that two unrelated features cannot unintentionally and silently overwrite each
others’ code. In other words, there is no overspecification.

Furthermore, product lines will be globally unambiguous, meaning that for
every valid feature configuration, there is a uniquely generated product. Lastly,
if local constraints are met, it is guaranteed that at the end of the workflow,
all necessary features and feature combinations have in fact been implemented
(this is because deltas in ABS satisfy the non-interference property [15]). The
product line implementation is complete.

4 Deployment Modeling

The functional correctness of a product largely depends on its high-level behav-
ioral specification, independent of the platform on which the resulting code will
be deployed. However, different deployment platforms may be envisaged for dif-
ferent products in a software product line, and the choice of deployment platform
for a specific product may hugely influence its quality of service. For example,
limitations in the processing capacity of the CPU of a cell phone may restrict
the features that can be selected, and the capacity of a server may influence the
response time for a service for peaks in the client traffic. In this section, we give
an overview of how deployment concerns are captured in ABS models.

Modeling Timed Behavior in ABS Real-Time ABS [4] is an extension of
ABS in which the timed behavior of ABS models may be captured. An untimed



ABS model is a model in Real-Time ABS in which execution takes zero time;
thus, standard statements in ABS are assumed to execute in zero time. Timing
aspects may be added incrementally to an untimed behavioral model. Our ap-
proach extends ABS with a combination of explicit and implicit time models.
In the explicit approach, the modeler specifies the passage of time in terms of
duration statements with best and worst-case time. These statements are in-
serted into the model, and capture the duration of computations which do not
depend on the deployment architecture. This is the standard approach to mod-
eling timed behavior, known from, e.g., timed automata in UPPAAL [21]. In the
implicit approach, the actual passage of time is measured during execution and
may depend on the capacity and load of the server where a computation occurs.

Real-Time ABS introduces two new data types into the functional sublan-
guage of ABS: Time, which has the constructor Time(r), and Duration which has
the constructors InfDuration and Duration(r), where r is a value of the type Rat
of rational numbers. Let f be a function defined in the functional sublanguage
of ABS, which recurses through some data structure x of type T, and let size
be a measure of the size of this data structure. Consider a method m which
takes as input such a value x and returns the result of applying f to x. Let us
assume that the time needed for this computation depends on the size of x; e.g.,
the time needed for the computation will be between a duration 0.5*size(x) and
a duration 4*size(x). We can specify an interface I which provides the method
m and a class C which implements this method, including the duration of its
computation using the explicit time model, as follows:

interface I { Int m(T x) }

class C implements I {

Int m (T x){ duration(0.5*size(x), 4*size(x)); return f(x);

} }

The object-oriented perspective on timed behavior is captured in terms of dead-
lines to method calls. Every method activation in Real-Time ABS has an asso-
ciated deadline, which decrements with the passage of time. This deadline can
be accessed inside the method body using the expression deadline(). Deadlines
are soft; i.e., deadline() may become negative but this does not in itself stop
the execution of the method. By default the deadline associated with a method
activation is infinite, so in an untimed model deadlines will never be missed.
Other deadlines may be introduced by means of call-site annotations.

Let o be an object of a class implementing method m. We consider a method
n which invokes m on o, and let scale(d,r) be a scaling function which multiplies
a duration d by a rational number r. The method n specifies a deadline for this
call, given as an annotation and expressed in terms of its own deadline (if its own
deadline is InfDuration, then the deadline to m will also be unlimited). Method
n may be defined as follows:

Int n (T x){ [Deadline: scale(deadline(),0.9)] return o.m(x); }



In the implicit approach to modeling time in ABS, time is not specified
directly in terms of durations, but rather observed on the model. This is done by
comparing clock values from a global clock, which can be read by an expression
now() of type Time. We specify an interface J with a method timer(x) which,
given a value of type T, returns a value of type Duration, and implement timer(x)
in a class D such that it measures the time it takes to call the method m above:

interface J { Duration timer (T x) }

class D implements J (I o) {

Duration timer (T x){ Time start; Int y;

start = now(); y=o.m(x); return timeDifference(now(),start);

} }

With the implicit time model, no assumptions about specific durations are in-
volved. The duration depends on how quickly the method call is effectuated by
the object o. The duration is observed by comparing the time before and after
making the call. As a consequence, the duration needed to execute a statement
with the implicit time model depends on the capacity of the specific deployment
model and on synchronization with (slower) objects.

Deployment Components A deployment component in Real-Time ABS cap-
tures the execution capacity associated with a number of COGs. Deployment
components are first-class citizens in Real-Time ABS, and specify an amount of
resources shared by their allocated objects. Deployment components may be dy-
namically created depending on the control flow of the ABS model or statically
created in the main block of the model. We assume a deployment component
environment with unlimited resources, to which the root object of a model is
allocated. When COGs are created, they are by default allocated to the same
deployment component as their creator, but they may also be allocated to a
different deployment component. Thus, a model without explicit deployment
components runs in environment, which places no restrictions on the execution
capacity of the model. A model may be extended with other deployment com-
ponents with different processing capacities.

Given interfaces I, J and classes C, D as defined above, we can specify a
deployment architecture, where two C objects are put on different deployment
components Server1 and Server2, and interact with the D objects on the same de-
ployment component Client. Deployment components have the type DC and are
instances of the class DeploymentComponent, taking as parameters a name, given
as a string, and a set of restrictions on resources. Here we focus on processing ca-
pacity, which is specified by the constructor CPUCapacity(r), where r represents
the amount of available abstract processing resources between observable points
in time. Below, we create three deployment components Server1, Server2, and
Server3, with processing capacities 50, 100, and unlimited (i.e., Server3 has no re-
source restrictions). The local variables mainserver, backupserver, and clientserver
refer to these deployment components. Objects are explicitly allocated to servers
via annotations. The keyword cog indicates the creation of a new COG.



{ // The main block initializes a static deployment architecture:
DC mainserver = new DeploymentComponent("Server1", set[CPUCapacity(50)]);

DC backupserver = new DeploymentComponent("Server2", set[CPUCapacity(100)]);

DC clientserver = new DeploymentComponent("Server3", EmptySet);

[DC: mainserver] I object1 = new cog C;

[DC: backupserver] I object2 = new cog C;

[DC: clientserver] J client1 = new cog D(object1);

[DC: clientserver] J client2 = new cog D(object2);

}

Resource Costs The resource capacity of a deployment component determines
how much computation may occur in the objects allocated to that deployment
component. Objects allocated to the deployment component compete for the
shared resources to execute, and they may execute until the deployment compo-
nent runs out of resources or they are otherwise blocked. For the case of CPU
resources, the resources of the deployment component define its capacity between
observable (discrete) points in time, after which the resources are renewed.

The cost of executing a statement in the ABS model is determined by a
default value which can be set as a compiler option (e.g., defaultcost=10). How-
ever, the default cost does not discriminate between the statements. If e is a
complex expression, then the statement x=e should have a significantly higher
cost than skip. For this reason, more fine-grained costs can be inserted into the
model via annotations. For example, the exact cost of computing function f de-
fined on p. 10 may be given as a function g depending on the size of the input
x. Consequently, in the context of deployment components, we can specify a
resource-sensitive re-implementation of interface I without predefined duration
in class C2 as follows:
class C2 implements I {

Int m (T x){ [Cost: g(size(x))] return f(x);

} }

It is the responsibility of the modeler to specify the execution costs in the model.
A behavioral model with default costs may be gradually refined to provide more
realistic resource-sensitive behavior. For the computation of the cost function g
in our example above, the modeler may be assisted by the COSTABS tool [1],
which computes a worst-case approximation of the cost function for f in terms of
the input value x based on static analysis techniques, given the ABS definition
of the expression f. However, the modeler may also want to capture resource
consumption at a more abstract level during the early stages of the system design,
for example to make resource limitations explicit before a further refinement of
a model. Therefore, cost annotations may be used by the modeler to abstractly
represent some computation which remains to be fully specified. For example, the
class C3 below may represent a draft version of our method m which specifies the
worst-case cost of the computation even before the function f has been defined:



class C3 implements I {

Int m (T x){ [Cost: size(x)*size(x)] return 0;

} }

Costs need not depend merely on data values, but may also reflect overhead
in general, as captured by expressions in ABS; e.g., a cost expression can be a
constant value or depend on the current load of the deployment component on
which the computation occurs.

Dynamic Deployment Architectures The example presented in this section
concentrates on giving simple intuitions for the modeling of deployment archi-
tectures in ABS in terms of a static deployment scenario. A full presentation of
this work, including the syntax and formal semantics of such deployment archi-
tectures, is given in [13,18]. Obviously, the approach may be extended to support
the modeling of load-balancing strategies. We have considered two such exten-
sions, based on adding an expression load(n) which returns the average load of
the current deployment component over the last n time intervals. First, by in-
cluding resources as first-class citizens of ABS and allowing (virtual) resources to
be reallocated between deployment components [17]. Second, by allowing objects
to be marshaled and reallocated between deployment components [19]. Further-
more, we have studied the application of the deployment component framework
to memory resources and its integration with COSTABS in [2].

5 The ABS Component Model

Components are an intuitive tool to achieve unplanned dynamic reconfiguration.
In a component system, an application is structured into several distinct pieces
called component. Each of these components has dependencies towards func-
tionalities located in other components; such dependencies are collected into the
output ports. The component itself, however, offers functionalities to the other
components, and these are collected into the input ports. Communication from
an output port to an input port is possible when a binding between the two ports
exists. Dynamic reconfiguration in such a system is then achieved by adding and
removing components and by re-binding. Hence, updates and modifications act-
ing on applications are possible without stopping them.

5.1 Related Work

While the idea of component is simple, bringing it into a concrete programming
language is not easy. The informal description of components talks about the
structure of a system, and how this structure can change at runtime, but does
not mention program execution. As a matter of fact, many implementations of
components do not merge into one coherent model (i) the execution of the pro-
gram, generally implemented using a classic object-oriented language like Java



or C++, and (ii) the component structure, generally described in an annex Ar-
chitecture Description Language (ADL). This approach makes it simple to add
components to an existing language, however, unplanned dynamic reconfigura-
tion becomes hard, as it is difficult to express modifications of the component
structure using objects (as these are just supposed to describe the execution of
the programs). For instance, models like Click [27] do not allow runtime mod-
ifications while OSGi [28] only allows the addition of new classes and objects:
component deletion or binding modification are not supported. In this respect,
a more flexible model is Fractal [5], which reifies components and ports into ob-
jects. Using an API, in Fractal it is possible to modify bindings at runtime and
to add new components; still, it is difficult for the programmer to ensure that
reconfiguration will not cause state inconsistencies.

Formal approaches to component models have been studied e.g., [6,23–26,32].
These models have the advantage of having a precise semantics, which clearly
defines what is a component, a port and a binding (when such a construct is
included). This helps to understand how dynamic reconfiguration can be im-
plemented and how it interacts with the normal execution of a program. In
particular, Oz/K [25] and COMP [24] propose a way to integrate in a unified
model both components and objects. Oz/K, however, has a complex commu-
nication pattern and deals with adaptation via the use of passivation, which
is a tricky operator [22] and in the current state of the art breaks most tech-
niques for behavioral analysis. In contrast, COMP offers support for dynamic
reconfiguration, but its integration into the semantics of ABS appears complex.

5.2 Our Approach

Most component models have a notion of component that is distinct from the
objects used to represent the data and the execution of programs. Such languages
are structured in two layers, one using objects for the main execution of the
program, one using components for dynamic reconfiguration. Even though such a
separation seems natural, it makes the integration of requests for reconfiguration
into the program’s workflow difficult. In contrast, in our approach we went for
a uniform description of objects and components; i.e., we enhance objects and
COGs—the core ingredients of ABS—with the core elements of components
(ports, bindings, consistency, and hierarchy) to enable dynamic reconfiguration.

We achieved this by exploiting the similarities between objects (and object
groups) and components. Most importantly, the methods of an object closely re-
semble the input ports of a component. In contrast, objects do not have explicit
output ports, but the dependencies of an object can be stored in internal fields.
Thus, rebinding an output port corresponds to the assignment of a new value
to the field. Standard objects, however, cannot ensure consistency of the rebind-
ing. Indeed, suppose we wished to treat certain object fields as output ports: we
could add methods to the object for their rebinding; but it would be difficult,
in presence of concurrency, to ensure that a call to one of these methods does
not harm ongoing computations. For instance, if we need to update a field (like
the driver of a printer), then we would first want to wait for the termination



of all current executions referring to that field (e.g., printing jobs). COGs (ob-
ject groups) in ABS offer a mechanism to avoid race conditions at the level of
methods, by ensuring that there is at most one task running in a COG. But this
mechanism is not sufficient to deal with rebinding where we may need to wait
for several methods to finish before performing it. Another difference between
object and component models is that the latter talk about locations. Locations
structure a system, possibly hierarchically, and can be used to express dynamic
addition or removal of code, as well as distributed computation.

To ensure the consistent modifications of bindings and the possibility to ship
new pieces of code at runtime, we add four elements to the ABS core language:

1. A notion of output port distinct from an object’s fields. The former (iden-
tified with the keyword port) represent the object’s dependencies and can
be modified only when the object is in a safe state; the latter constitute the
inner state of an object and can be modified with ordinary assignments.

2. The possibility to annotate methods with the keyword critical: this specifies
that the object, while this method is executing, is not in a safe state.

3. A new primitive to wait for an object to be in a safe state. Thus, it be-
comes possible to wait for all executions using a given port to finish, before
rebinding the port to a new object.

4. We add locations. Our semantics structures an ABS model into a tree of
locations that can contain object groups, and that can move within the
hierarchy. Using locations, it is possible to model the addition of new pieces
of code to a program at runtime. Moreover, it is also possible to model
distribution (each top-level location being a different computer) and code
mobility (by moving a sub-location from a computer to another one).

The resulting component language remains close to the underlying ABS lan-
guage and, in fact, is a conservative extension of ABS (i.e., a core ABS model is
valid in our language and its semantics is unchanged). As shown in the following
example, introducing the new primitives into a given ABS model is simple. In
contrast to previous component models, our language does not strongly sepa-
rate objects and components. Three major features of the informal notion of
component—ports, consistency, and location—are represented in the language
as follows: (i) output ports are taken care of at the level of our enhanced ob-
jects; (ii) consistency is taken care of at the level of COGs; (iii) information
about locations is added explicitly.

5.3 Example

We illustrate our approach with an example inspired from the Virtual Office
case study of the HATS project [10]. This case study supposes an open envi-
ronment with resources like computers, projectors or printers that are used to
build different workflows. Assume we want to define a workflow that takes a
document (a resource modeled with the class Document), modifies it using an-
other resource (modeled with the class Operator) and then sends it to a printer



(modeled with the class Printer). We suppose that the protocol used by Opera-
tors is complicated, so we isolate it into a dedicated class. Finally, we want to be
able to change protocol at runtime, without disrupting the execution of previous
instances of the workflow. Such a workflow can be defined as follows:

class OperatorFrontEnd(Operator op) {

port Operator _op;

critical Document modify(Document doc) { ... }

{ rebind _op = op; }

}

class WFController(Document doc, Operator op, Printer p) {

port Document _doc;

port Printer _p;

OperatorFrontEnd _opfe;

critical void newInstanceWF() { ... }

void changeOperator(Operator op) {

await(‖this,_opfe‖);
rebind _opfe._op = op;

}

{

rebind _doc = doc;

rebind _p = p;
_opfe = new OperatorFrontEnd(op);

} }

We have two classes: the class OperatorFrontEnd implements the protocol
in the method modify(doc); the class WFController encodes the workflow. The
elements _op, _doc and _p are ports (annotated as port) and represent depen-
dencies to external resources. It is only possible to modify their value using the
construct rebind, which checks whether the object is in a safe state (no critical
method in execution) before modifying the port. Moreover, methods modify(doc)
and newInstanceWF() make use of these ports in their code, and are thus anno-
tated as critical as it would be dangerous to rebind ports during their execution.

The key operations of our component model are shown in the two lines of
code in the body of the method changeOperator(op). First is the await statement,
which waits for objects this and _opfe to be in a safe state. By construction, these
objects are in a safe state when there are no running instances of the workflow: it
is then safe to modify the ports. Second is the rebind statement: it will succeed,
because the concurrency model of COGs ensures that no workflow instance can
be spawned between the end of the await and the end of the method. Moreover,
the second line shows that it is possible to rebind a port of another object,
provided that this object is in the same COG as the one doing the rebinding.
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Fig. 4. Feature diagram of the replication system

6 An Industrial Case Study

The Fredhopper Access Server (FAS) is a distributed, concurrent OO system that
provides search and merchandising services to e-Commerce companies. Briefly,
FAS provides to its clients structured search capabilities within the client’s data.
FAS consists of a set of live and staging environments. A live environment pro-
cesses queries from client web applications via web services. FAS aims at pro-
viding a constant query capacity to client-side web applications. A staging envi-
ronment is responsible for receiving data updates in XML format, indexing the
XML, and distributing the resulting indices across all live environments accord-
ing to the replication protocol. The replication protocol is implemented by the
Replication System. The replication system consists of a SyncServer at the stag-
ing environment and one SyncClient for each live environment. The SyncServer
determines the schedule of replication, as well as their contents, while SyncClient
receives data and configuration updates.

Modeling Variability There are several variants of the Replication System
and we express them as features. Fig. 4 shows the feature diagram of the replica-
tion system. For brevity, we consider only features ReplicationSystem, ClientNr,
Schedule, Search, and Business. These are shaded in the feature diagram; full
treatment of the complete feature diagram can be found in the HATS project
report [14]. We list the µTVL model that describes these features.

root ReplicationSystem { group allof {

opt ClientNr { Int c in [1 .. 20]; Int j in [1 .. 20]; },

Schedule { group allof {

opt Search { Int d in [1 .. 60]; Int l in [1 .. 60]; d <= l; },

opt Business { Int d in [1 .. 60]; Int l in [1 .. 60]; d <= l; }

} } } }

The replication system has the optional feature ClientNr for specifying the num-
ber of SyncClients participating in the replication protocol. It has the mandatory
feature Schedule for specifying replication schedules. Replication schedules dic-
tate when and where the replication system should monitor for changes in the



staging environment to be replicated to the live environments. A replication sys-
tem may offer one or both of Search and Business features. The feature Search
specifies the interval in which the replication system replicates the changes from
the search index. The search index is the underlying data structure for provid-
ing search capability on customers’ product items. The feature Business specifies
the intervals for replicating business configuration. The business configuration
defines the presentation of search results, such as sorting and promotions.

We employ the delta modeling workflow (Sect. 3) to construct an ABS model
of the replication system. We start with an empty product line and define the
core product as class Main {} { new Main(); }. Following the delta modeling
workflow, we begin with the base feature ReplicationSystem. We model this
feature by the delta SystemDelta:

delta SystemDelta {

modifies class Main {

adds Unit run() {

List<Schedule> ss = this.getSchedules();
Set<ClientId> cs = this.getCids();
Int maxJobs = this.getMaxJobs();
Int updates = this.getUpdateInterval();
new ReplicationSystem(updates, ss, maxJobs, cs);

} } }

The run() method creates a ReplicationSystem according to default setup. In
addition, SystemDelta adds the necessary type definitions, such as data types,
type synonyms, and core ABS classes and interfaces that model the underlying
file system, the SyncClient and the SyncServer. Next to consider is the optional
feature ClientNr, implemented by ClientNrDelta:

delta ClientNrDelta(Int c, Int j) {

modifies class Main {

modifies Set<ClientId> getCids() {

Int s = c; Set<Int> cs = EmptySet;

while (s > 0) { cs = Insert(s,cs); s = s-1; } return cs; }

modifies Int getMaxJobs() { return j; }

} }

The delta modifies getCids() and getMaxJobs() of class Main such that the repli-
cation system has synchronisation clients and a maximum number of replication
jobs per client. Now we consider the mandatory feature Schedule, implemented
by ScheduleDelta:

delta ScheduleDelta {

modifies class Main {

adds List<Pair<String,List<Item>>> searchItems = ... ;

adds List<Pair<String,List<Item>>> businessItems = ... ;

adds List<Schedule> getSchedules() {

Map<String,Pair<Int,Deadline>> m = this.getScheduleMap();



return itemMapToSchedule(Nil, m, concatenates(list[searchItems])); }

} }

This delta adds methods and fields to Main to model various schedule informa-
tion such as the types of schedules and their possible file locations from which
changes are replicated. The next feature we consider is the optional feature
Search, implemented by SearchDelta:

delta SearchDelta(Int d, Int l) {

modifies class Main {

modifies Map<String,Pair<Int,Deadline>> getScheduleMap() {

return put(ScheduleDelta.original(), "Search", Pair(d, Duration(l))); }

} }

This modifies method getScheduleMap() to set the interval between replicating
the search index directory and the deadline for each such replication job as
specified by feature Search. Since replicating the search index directory is the
default schedule as defined by feature Schedule, this delta only modifies the
specification of the schedule. Finally, we consider feature Business, implemented
by BusinessDelta:

delta BusinessDelta(Int d, Int f) {

modifies class Main {

modifies Map<String,Pair<Int,Deadline>> getScheduleMap() {

return put(ScheduleDelta.original(), "Business rules", Pair(d, Duration(l)));

}

modifies List<Schedule> getSchedules() { ... }

} }

Similar to SearchDelta, this delta modifies method getScheduleMap() to set the
interval between replicating a set of file locations and the deadline for each such
replication job. In addition, it modifies getSchedules() to add schedules for
business configuration to the replication system, the details of which we omit.
We notice that BusinessDelta causes a conflict with SearchDelta. We resolve
this conflict by providing the resolving delta SBDelta:

delta SBDelta {

modifies class Main {

modifies List<Schedule> getSchedules() {

return appendRight(SearchDelta.original(), BusinessDelta.original()); }

} }

SBDelta resolves the conflict between BusinessDelta and SearchDelta by insisting
that the returned list of schedules contains the list of search index directory
replication schedules followed by the list of business configuration replication
schedules. Note that while both deltas modify getScheduleMap(), the order in
which the modifications are applied needs not be specified, therefore, SBDelta
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does not provide a conflict resolver for those modifications. With no further
feature interaction or conflict resolution to implement in this iteration, and no
further features to implement, we obtain the complete product line.

Resource Simulation Using Real-Time ABS and deployment components
(Sect. 4), we augment the replication system model with resource information
such as processing power. We simulate the effects of processing power during ex-
ecution of the replication system with the Maude backend of the ABS compiler.
The following shows partial definitions of classes ConnectionThread, ClientJob.

class ConnectionThread {

Unit run() {

[Cost:size(sch)] this.start(sch); ... [Cost:length(fs)] this.register(fs); ...

[Cost:length(fs)] this.transfer(fs); ... [Cost:size(sch)] this.finish(sch); }}

class ClientJob(Client client, ...) {

Int total = 0;

Unit run() { Time bt = now(); ... total = timeDifference(bt,now()); }}

Each ConnectionThread object, created by SyncServer, provides a run() method
for interacting with a ClientJob object to fulfill the staging environment side
of the replication protocol, while each ClientJob object, created by SyncClient,
provides a run() method to fulfill the live environment side of the replication
protocol. We provide cost annotations for specific method invocations of the
run() method of ConnectionThread to describe the amount of CPU resources.7
We inject time stamps at the beginning and the end of the run() method of
ClientJob to calculate the execution time of a client job. Fig. 5 shows a graph of
the average execution time (in simulated time units) of client jobs depending on
the number of SyncClients and compares one vs. two CPUs. The graph shows
that with a single CPU, the client job execution time increases linearly with the
number of SyncClients, while with two CPUs this is no longer the case.

7 Cost expressions are abstractions from concrete values obtained using the combina-
tion of real-time simulation and static cost analysis [1].



Unit Testing During development of the replication system unit tests were
written to validate the class methods and to detect regressions. We created
the ABSUnit testing framework, based on the xUnit architecture, for writing
unit tests for ABS [?]. We illustrate ABSUnit with method processFile(id) of
ClientJob. This method checks whether a file named id exists in the underlying
database and returns its size. We define an interface ClientJobTest as the type
of the test suite. It defines a test method test() and data points getData():

type Data = Map<Fn,Maybe<Size>>;

[Suite] interface ClientJobTest {

[Test] Unit test(Data ds);

[DataPoint] Set<Data> getData(); }

The return value of data points serves as input to the test method. The following
listing shows a part of the class TestImpl that implements the methods test()

and getData() from the interface ClientJobTest.

interface Job { Maybe<Size> processFile(Fn id); Unit setDB(DataBase db); }

[SuiteImpl] class TestImpl implements ClientJobTest {

Set<Data> testData = ...; ABSAssert aut = ...

Set<Data> getData() { return testData }

Job getCJ(DataBase db) { return null; }

Unit test(Data ds) {

DataBase db = new cog TestDataBase(ds); Job job = this.getCJ(db);
Set<Fn> ids = keys(ds);

while (hasNext(ids)) {

Pair<Set<Fn>,Fn> nt = next(ids); Fn i = snd(nt); ids = fst(nt);

Maybe<Size> s = job.processFile(i);

Comparator cmp = new MComp(lookup(ds,i),s);

aut.assertEquals(cmp); }}}

Method test() defines a test case on processFile(id). Class MComp provides a
comparator between two Maybe<Size> values. To ensure the client job object
under test is prepared for unit testing, we define a delta to remove the run()

method, add a setter, add a mock implementation of the database for testing,
and assign type Job to ClientJob, so we can add a mock database to the object
under test. This is a major advantage of delta modeling: code needed only for
testing is encapsulated in test deltas and does not clutter up productive code.

delta JobTestDelta {

modifies class ClientJob implements Job {

removes Unit run(); adds Unit setDB(DataBase db) { this.db = db; }}

modifies class TestImpl {

modifies Job getCJ(DataBase db) {

Job cj = new ClientJob(null); cj.setDB(db); return cj; }}}

The ABSUnit framework comes with a test runner generator that is built into
to the ABS frontend. The test runner generator takes .abs files of the system



under test and returns an .abs file defining a main block that executes the test
cases concurrently. Here is the test runner for test interface ClientJobTest:

{ Set<Fut<Unit>> fs = EmptySet; Fut<Unit> f;

ClientJobTest gd = new TestImpl(); Set<Data> ds = gd.getData();

while (hasNext(ds)) {

Pair<Set<Data>,Data> nt = next(ds); Data d = snd(nt); ds = fst(nt);

ClientJobTest gd = new cog TestImpl(); f = gd!test(d); fs = Insert(f,fs); }

Pair<Set<Fut<Unit>>,Fut<Unit>> n = Pair(EmptySet,f);

while (hasNext(fs)) { n = next(fs); f = snd(n); fs = fst(n); f.get; }}

7 Conclusion

We gave an overview over the solutions to architectural issues provided by the
ABS language developed in the EU FP7 project HATS. In contrast to many other
behavioral modeling formalisms, ABS provides first-class support for feature
models and connects them to implementations by a variant of feature-oriented
programming called delta modeling. This allows to formally define a systematic
delta modeling workflow for a feature-driven modeling process, which integrates
very well with standard quality assurance techniques such as unit testing where
it achieves a separation of concerns. As all software is deployed inside a wider
system architecture, it is crucial to model and analyze constraints coming from
deployment, which in ABS is done by deployment components. To structure and
dynamically reconfigure a system one needs a suitable notion of components.
ABS components are a conservative extension of ABS with a formal semantics.
A case study, which is briefly reported in Sect. 6, demonstrates that the ABS
approach scales to industrial applications. In a future paper we will concentrate
on the tool chain shipped with the ABS environment, which contains a wide
range of analysis and code generation tools.
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