
Formal Modeling and Analysis of
Resource Management for Cloud Architectures
An Industrial Case Study using Real-Time ABS

Elvira Albert · Frank S. de Boer · Reiner Hähnle ·
Einar Broch Johnsen · Rudolf Schlatte ·
S. Lizeth Tapia Tarifa · Peter Y. H. Wong

Received: 7 January 2013 / Revised: 14 June 2013 / Accepted: 5 November 2013

Abstract We demonstrate by a case study of an in-
dustrial distributed system how performance, resource
consumption, and deployment on the cloud can be for-
mally modeled and analyzed using the abstract behav-
ioral specification language Real-Time ABS. These non-
functional aspects of the system are integrated with
an existing formal model of the functional system be-
havior, achieving a separation of concerns between the
functional and non-functional aspects in the integrated
model. The resource costs associated with execution in
the system depend on the size of local data structures,

Partly funded by the EU projects FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal
Models (http://www.hats-project.eu) and FP7-
610582 ENVISAGE: Engineering Virtualized Services
(http://www.envisage-project.eu).

E. Albert
DSIC, Complutense University of Madrid, Spain,
E-mail: elvira@fdi.ucm.es

F. S. de Boer
CWI, Amsterdam, The Netherlands,
E-mail: f.s.de.boer@cwi.nl

R. Hähnle
Technical University of Darmstadt, Germany,
E-mail: haehnle@cs.tu-darmstadt.de

E. B Johnsen
Dept. of Informatics, University of Oslo, Norway,
E-mail: einarj@ifi.uio.no

R. Schlatte
Dept. of Informatics, University of Oslo, Norway,
E-mail: rudi@ifi.uio.no

S. L. Tapia Tarifa
Dept. of Informatics, University of Oslo, Norway,
E-mail: sltarifa@ifi.uio.no

P. Y. H. Wong
SDL Fredhopper, Amsterdam, The Netherlands,
E-mail: peter.wong@fredhopper.com

which evolve over time; we derive corresponding worst-
case cost estimations by static analysis techniques and
integrate them into our resource-sensitive model. The
model is further parameterized with respect to deploy-
ment scenarios which capture different application-level
management policies for virtualized resources. The model
is validated against the existing system’s performance
characteristics and used to simulate, analyze, and com-
pare deployment scenarios on the cloud.

Keywords Virtualization · cloud computing · formal
methods · abstract behavioral specification · executable
modeling · worst-case cost analysis · static analysis ·
hybrid validation

1 Introduction

Virtualization is a key technology enabler for cloud
computing. Although the added value and compelling
business drivers of cloud computing are undeniable [20],
this new paradigm also poses considerable new chal-
lenges that have to be addressed to render its usage ef-
fective for industry. Virtualization gives services at the
application-level access to elastic amounts of resources;
for example, the processing capacity allocated to a ser-
vice may be changed according to demand.

Current software development methods, however,
do not support the development of virtualized software
in a satisfactory way; in particular, they do not help de-
velopers model and validate application-level resource
management strategies for virtualized resources early
in the development process. For example, the concrete
and precise cost and resource requirements needed to
deploy a service in the cloud needs to be estimated
manually on a case by case basis depending on each cus-
tomer’s requirements and expectations. Whereas some

Preprint. To appear in Journal of Service-Oriented Computing and Applications.
DOI: 10.1007/s11761-013-0148-0. Springer, 2013.

2 E. Albert et al.

cloud providers already offer functionality to dynami-
cally manage resource allocation, this functionality is
not reflected in current design processes. These issues
seriously restrict the potential for fine-tuning a service
to the available virtualized resources during the design
phase, and force the developer to introduce and validate
resource management for the service after the develop-
ment of the overall service logic and control flow. In the
worst case, faulty provisioning can make it necessary to
redesign an application, which is extremely expensive
when discovered after deployment. This article shows
how to overcome these limitations by integrating re-
source management into a formal, yet realistic, model
that permits simulation and analysis during service de-
sign time.

Our long-term goal is the integration of virtualiza-
tion into the development process of general purpose
software services, by leveraging resources and resource
management to the modeling of software. Our start-
ing point in addressing this challenge is the recently
developed abstract behavioral specification language
ABS [30]. ABS is object-oriented to stay close to high-
level programming languages and to be easily usable as
well as accessible to software developers, it is executable
to support full code generation and (timed) validation
of models, and it has an operational formal semantics.
The resource analysis tool used in our work is based on
that formal semantics. This guarantees that the static
analysis of the worst-case resource consumption of ABS
models is sound for any input. In consequence, it is ac-
tually possible to (automatically) generate formal cor-
rectness proofs for the obtained resource bounds [6].

Real-Time ABS extends ABS with time and with
primitives for leveraging resources and their dynamic
management to the abstraction level of software mod-
els [15,33]. The extension achieves a separation of con-
cerns between the application model, which requires re-
sources, and the deployment scenario, which reflects the
virtualized computing environment and provides elas-
tic resources. For example, an application model may
be analyzed with respect to deployments on virtual
machines with varying features: the amount of allo-
cated computing or memory resources, the choice of
application-level scheduling policies for client requests,
or the distribution over different virtual machines with
fixed bandwidth constraints. The simulation and anal-
ysis tools developed for ABS may then be used to com-
pare the performance of a service ranging over different
deployment scenarios already at the modeling level.

Summary of Contributions

The overall contribution of this article is a large indus-
trial case study, which demonstrates that it is possible
to model aspects of performance, resource consump-
tion, and deployment on the cloud at design time based
on Real-Time ABS. This article refines and substan-
tially extends a paper published at ESOCC 2012 [16],
which focused on the modeling and validation of the
case study for average costs by means of simulation; in
the present article we take worst-case costs into account
and apply static resource analysis and hybrid valida-
tion to the case study. The main contributions of the
presented work are as follows. The last two points are
original contributions of this article.

– Modeling. The non-functional aspects are integrated
with a model of the functional system behavior,
achieving a separation of concerns between the func-
tional and non-functional aspects of the case study.
The ABS model is parameterized over deployment
scenarios which capture different application-level
management policies for virtualized resources.

– Validation. The model is validated against the exist-
ing system’s performance characteristics and used to
simulate and compare deployment scenarios on the
cloud. A companion paper [34] details the modeling
of the cloud provider and compares our approach to
results obtained by simulation tools.

– Analysis. For the first time, resource analysis [3] has
been applied to a case study of industrial size. In
particular, we have been able to analyze statically
a large fragment of the model whose Java imple-
mentation included an undetected hot spot in the
program. We succeeded to infer the worst-case re-
source consumption of this part of the code and the
formal analysis explains precisely why its resource
consumption is high.

– Hybrid validation. We have combined dynamic and
static analysis to validate the model in a novel way.
In particular, we have used the resource bound in-
ferred by static resource analysis during the timed
simulation of deployed, concurrent models. In pre-
vious work [7] the results of resource analysis had
merely been used combined with dynamic analysis
to validate the untimed behavior of sequential frag-
ments of code for small examples.

Organization of the Article

The article is organized as follows: In Section 2 we mo-
tivate and describe the case study. Section 3 presents
the modeling layers of Real-Time ABS, starting with

Formal Modeling of Resource Management for Cloud Architectures 3

the functional and imperative layers before we explain
how deployment scenarios are modeled in Real-Time
ABS. Section 4 describes the modeling of the case study
and proceeds with resource analysis and calibration of
the model, before we combine the obtained worst-case
bounds with simulation techniques in a hybrid valida-
tion approach to the case study. Section 5 discusses re-
lated work and Section 6 concludes the article.

2 The Case Study: Background & Motivation

The Fredhopper Access Server (FAS) is a distributed,
concurrent object-oriented system that provides search
and merchandising services to e-Commerce companies.
Briefly, FAS provides to its clients structured search
capabilities within the client’s data. Each FAS installa-
tion is deployed to a customer according to a deploy-
ment architecture; see [48] for a detailed presentation of
the individual components of FAS and its deployment
model.

For the purposes of this case study, FAS consists
of a set of live environments and a single staging en-
vironment. A live environment processes queries from
client web applications via web services. FAS aims at
providing a constant query capacity to client-side web
applications. The staging environment is responsible for
receiving data updates in XML format, indexing the
XML, and distributing the resulting indices across all
live environments. The distribution of indexed data is
done according to a Replication Protocol, which is im-
plemented by the Replication System. The Replication
System consists of a SyncServer at the staging envi-
ronment and one SyncClient for each live environment.
The SyncClient initially performs a Boot job to iden-
tify Replication jobs that are relevant for its live en-
vironment, and creates listeners for these Replication
jobs. Replication jobs may relate to the search index,
business rules (e.g., presentation and promotions), and
data (e.g., navigation). The SyncServer determines the
schedule and content of different Replication jobs, while
a SyncClient receives data and configuration updates.

The SyncServer communicates to a SyncClient by
creating ConnectionThread objects. These objects serve
as the interface to the server side of the Replication Pro-
tocol. A ConnectionThread object delegates actual data
replication to its Handler via the Acceptor. A SyncClient,
on the other hand, schedules and creates ClientJob ob-
jects to handle communications to the client side of the
Replication Protocol; thus, ClientJob objects on a client
side live environment recursively realize the replication
schedules computed by the ConnectionThread objects
on the server side staging environment. Figure 1 shows

a UML sequence diagram which illustrates the replica-
tion protocol between a ClientJob, a ConnectionThread,
and an Acceptor. In this article, we detail a part of the
Replication Protocol that is informally described in Fig-
ure 2.

Relevance to Cloud Computing. FAS provides struc-
tured search and navigation capabilities within client
data. For the last decade, FAS installations were de-
ployed as server-based products on client premises with
fixed hardware resources. However, on-premise deploy-
ment does not scale with growing demand on through-
put and update frequency. This is visible in partic-
ular when customers experience drastic increases on
throughput and data updates at certain time periods.
For example, retail customers typically expect large
throughput during seasonal sales. In these periods, con-
siderably larger amounts of purchases are made and
stock units need to be updated very frequently, in order
to avoid that customers receive incorrect information.
Higher throughput requires a larger number of live en-
vironments and, in turn, a larger number of SyncClient
objects. On-premise deployment cannot cope with vary-
ing, on-demand requirements without large up-front in-
vestments in hardware which remains unused most of
the time.

To cater for these requirements, FAS is today de-
ployed as a service (SaaS) over virtualized resources
that provide the necessary elasticity. To this end, vir-
tualization makes elastic amounts of resources available
to application-level services; for example, the process-
ing capacity allocated to a service can be changed on
demand. Figure 3 shows how an on-demand deployment
architecture for the Replication System on virtual envi-
ronments is implemented using cloud resources. Virtu-
alized resources allow the SyncServer (via the Acceptor)
to elastically allocate resources to each replication job
based on the cost and the deadline of the replication to
be conducted by the corresponding ClientJob object.

3 Modeling Virtualized Resources and
Deployment in Real-Time ABS

ABS is an abstract, executable, object-oriented mod-
eling language with a formal semantics [30], targeting
distributed systems. ABS is based on concurrent ob-
ject groups (COGs), akin to concurrent objects [23,31],
Actors [1], and Erlang processes [10]. COGs in ABS
support interleaved concurrency based on guarded com-
mands. This allows active and reactive behavior to be
easily combined, by means of a cooperative scheduling
of processes which stem from method calls. Real-Time

4 E. Albert et al.

Fig. 1 The interaction between the ClientJob, the Acceptor, the Handler, and the ConnectionThread.

1. SyncServer starts by listening for connections from SyncClient objects.
2. SyncClient creates a ClientJob object with a Boot job, which connects to the SyncServer. This corresponds to the message

getConnection(this,s) in Figure 1, where s is a schedule.
3. SyncServer creates a ConnectionThread to communicate with this ClientJob.
4. The ClientJob asks ConnectionThread for all replication schedules. Replication schedules dictate when and where the

SyncServer monitors for changes in the staging environment. These changes are replicated to the live environments
through their SyncClient objects. Each schedule specifies a replication type; i.e., the number of locations and type of
data to be replicated. The schedule also specifies the amount of time until the replication must commence and the
deadline of each replication.

5. The ClientJob receives the replication schedules, denoted by the message sendSchedule(s) in Figure 1, and creates new
ClientJob objects representing the different schedules. If the old ClientJob object represented a Boot job, it releases the
ConnectionThread and terminates.

6. When a Replication job is triggered, its associated ClientJob object immediately connects to the SyncServer.
7. SyncServer creates a ConnectionThread to communicate with each ClientJob.
8. A ClientJob receives its replication schedule from the ConnectionThread and recursively creates a new ClientJob object

to deal with the next schedule. The ClientJob then receives a sequence of file updates according to its replication type,
after which it terminates.

9. The ConnectionThread first sends a replication schedule to the ClientJob according to the ClientJob’s replication type,
the ConnectionThread then sends the message registerItems to the ClientJob to acquire which sets of files to update.
For each set of files to be updated, the ConnectionThread creates a Handler via the Acceptor to send the message(s)
transferItem(item) (See Figure 1). After sending the file updates, the ConnectionThread terminates.

Fig. 2 Informal description of the interactions in the Replication Protocol.

ABS extends ABS models with time [15]; the execu-
tion time can be specified directly in terms of durations
(as in, e.g., UPPAAL [37]), but it can also be implicit
and just observed by measurements of the executing
model. With implicit time, no assumptions about exe-
cution times are hard-coded into the models. Instead,
the execution time of a method call depends on how
quickly the call is effectuated by the server object. In
fact, the execution time of a statement then varies with
the capacity of the chosen deployment architecture and
on synchronization with (slower) objects; similar calls

to the same method do not always take the same amount
of time.

Below, we first briefly introduce behavioral model-
ing in ABS, which combines a functional and an imper-
ative layer, and then explain the artefacts introduced
for deployment modeling. The explanations are kept at
an intuitive and informal level, with a focus on intu-
itions rather than the underlying formal semantics.

Formal Modeling of Resource Management for Cloud Architectures 5

Acceptor

Cloud

Provider

ClientJob

ClientJob

SyncClient

SyncClient

...

...

LIVE STAGING

SyncServer
create()

CLOUD

DC4

Connection

Thread

job(schedule)

job(schedule)

DC3

Connection

Thread

DC2

Connection

Thread

replication DC1

Handlerreplication

Connection

Thread

Connection

Thread

...

connect()
connect()

handler(cost)

handler(cost)

Fig. 3 An on-demand deployment architecture for the Replication System using Cloud resources.

T ::= I | D | D〈T 〉
A ::= X | T | D〈A〉

Dd ::= data D[〈A〉] = [Cons];
Cons ::= Co[(A)]

F ::= def A fn[〈A〉](A x) = e;
e ::= x | v | Co[(e)] | fn(e) | case e {br}
| this | now() | destiny() | deadline()

v ::= Co[(v)] | null
br ::= p⇒ e;
p ::= _ | x | v | Co[(p)]

Fig. 4 Syntax for the functional layer of Real-Time ABS.
Terms e and x denote possibly empty lists over the corre-
sponding syntactic categories, and square brackets [] optional
elements.

3.1 Behavioral Modeling in ABS

ABS combines functional and imperative programming
styles with a Java-like syntax. COGs execute in par-
allel and communicate through asynchronous method
calls. However, the data manipulation inside methods
is modeled using a simple functional language based on
user-defined algebraic data types and functions. Thus,
the modeler may abstract from the details of low-level
imperative implementations of data structures while
maintaining an overall object-oriented design close to
the target system.

3.1.1 The Functional Layer

The functional layer of ABS consists of algebraic data
types such as the empty type Unit, booleans Bool, and
integers Int; parametric data types such as sets Set<X>
and maps Map<X> (for a type parameter X); and func-
tions over values of these data types, with support for
pattern matching.

The syntax of the functional layer of ABS is given
in Figure 4. The ground types T are interfaces I, type
namesD, and instantiated parametric data typesD〈A〉.

Parametric data types A allow type names to be para-
meterized by type variables X. User-defined data types
definitions Dd introduce a name D for a new data type,
parameters A, and a list of constructors Cons. User-
defined function definitions F have a return type A, a
name fn, possible type parameters, a list of typed in-
put variables x, and an expression e. Expressions e are
variables x, values v, constructor, functional, and case
expressions, or the expressions this, now(), destiny(),
and deadline(). Values v are constructors applied to
values, or null. Case expressions match an expression e
to a list of case branches br on the form p ⇒ e which
associate a pattern p with an expression e. Branches
are evaluated in the listed order, the (possibly nested)
pattern p includes an underscore which works as a wild
card during pattern matching; variables in p are bound
during pattern matching and are in the scope of the
branch expression e. ABS provides a library with stan-
dard data types such as booleans, integers, sets, and
maps, and functions over these data types.

The functional layer of ABS can be illustrated by
considering polymorphic sets defined using a type vari-
able X and two constructors EmptySet and Insert:

data Set<X> = EmptySet | Insert(X, Set<X>);

Two functions contains, which checks whether an item
el is an element in a set set, and take, which selects an
element from a non-empty set set, can be defined by
pattern matching over set:

def Bool contains<X>(Set<X> set, X el) =
case set {
EmptySet => False ;
Insert(el, _) => True;
Insert(_, xs) => contains(xs, el); };

def X take<X>(Set<X> set) =
case set {
Insert(e, _) => e; };

6 E. Albert et al.

P ::= IF CL {[T x;] s }
IF ::= interface I { [Sg] }
CL ::= classC [(T x)] [implements I] { [T x;]M}
Sg ::= T m ([T x])
M ::= Sg {[T x;] s }
g ::= b | x? | duration(e, e) | g ∧ g
s ::= s; s | skip | if b { s } [else { s }] | while b { s } | return e
| duration(e, e) | suspend | await g | x = rhs

rhs ::= e | cm | new [cog] C (e)
cm ::= [e]!m(e) | x.get

Fig. 5 Syntax for the imperative layer of Real-Time ABS.

Similarly, a data type Resource can be defined to
model CPU capacity, which may be either unrestricted,
expressed by the constructor InfCPU, or restricted to r
resources, expressed by the constructor CPU(r) where r
represents the amount of available resources.

data Resource = InfCPU | CPU(Int capacity);

Here, an observer function capacity is automatically de-
fined for the constructor CPU, such that capacity(CPU(r))
returns r. It is not defined for InfCPU.

In Real-Time ABS, measurements are additionally
obtained by comparing values from a global clock, which
can be read by an expression now() of type Time. Using
the built-in function timeDifference to compare two val-
ues of type Time, we can for example define a function
to give us the elapsed time since a given starting time
start, as follows:

def Rat elapsed(Time start) = timeDifference(now(),start);

3.1.2 The Imperative Layer

The imperative layer of ABS addresses concurrency,
communication, and synchronization at the level of ob-
jects, and defines interfaces, classes, and methods. In
contrast to mainstream object-oriented languages, ABS
does not have an explicit concept of thread. Instead the
thread of execution is unified with the COGs as the
units of concurrency and distribution, which eliminates
race conditions in the models. Objects in a COG are
active in the sense that their run method, if defined,
gets called upon creation.

The syntax of the imperative layer of ABS is given in
Figure 5. A program P lists interface definitions IF and
class definitions CL, and has a main block {[T x;] s }
where the variables x of types T are in the scope of
the statement s. Interface and class definitions, as well
as signatures Sg and method definitions M are as in
Java. Below we focus on explaining the asynchronous
communication and suspension mechanisms of ABS.

Communication and synchronization are decoupled
in ABS. Communication is based on asynchronous method

calls, denoted by assignments f=o!m(e) where f is a fu-
ture variable, o an object expression, and e are (data
value or object) expressions. After calling f=o!m(e), the
caller may proceed with its execution without blocking
on the method reply. Two operations on future vari-
ables control synchronization in ABS. First, the state-
ment await f? suspends the active process unless a re-
turn value from the call associated with f has arrived,
allowing other processes in the same COG to execute.
Second, the return value is retrieved by the expression
f.get, which blocks all execution in the object until the
return value is available. Inside a COG, ABS also sup-
ports standard synchronous method calls o.m(e).

COGs locally sequentialize execution, resembling a
monitor with release points but without explicit sig-
naling. A COG can have at most one active process,
executing in one of the objects of the COG. This active
process can be unconditionally suspended by the state-
ment suspend, adding this process to the queue of the
COG, from which an enabled process is then selected for
execution. The guards g in await g control suspension
of the active process and consist of Boolean conditions b
conjoined with return tests f? on future variables f and
with time-bounded suspensions duration(e1,e2) which
become enabled between a best-case e1 and a worst-
case e2 amount of time. Just like functional expressions,
guards g are side-effect free. Instead of suspending, the
active process may block while waiting for a reply as
discussed above, or it may block for some amount of
time between a best-case e1 and a worst-case e2, using
the syntax duration(e1,e2). The remaining statements
of Real-Time ABS are standard; e.g., sequential com-
position s1; s2, assignment x=rhs, and skip, if, while,
and return constructs. Right hand side expressions rhs
include the creation of an object group new cog C(e),
object creation in the group of the creator new C(e),
method calls, and future dereferencing f.get, in addi-
tion to the functional expressions e.

To illustrate how the two layers of Real-Time ABS
can be combined, let us assume that an interface I im-
plements a method m. We define a method timer which
takes as parameter an object of interface I and returns
the elapsed time for the method call to o, as follows:

Rat timer(I o){ Time start, Bool b;
start = now(); b = o.m(); return elapsed(start);

}

3.2 Deployment Modeling in ABS

The response time to a request in a distributed sys-
tem depends not only on the size of the job requested,
but also on the amount of available resources and on

Formal Modeling of Resource Management for Cloud Architectures 7

the usage policy for these resources, which are scat-
tered around the deployment architecture of the dis-
tributed system. Deployment architectures express how
distributed systems are mapped on physical and/or vir-
tual media with many locations; the planning and val-
idation of a deployment architecture to optimize per-
formance, implies determining the amount of necessary
resources at the different locations as well as an optimal
usage of these resources, such that the system fulfills its
performance requirements.

Real-Time ABS lifts deployment architectures to
the abstraction level of the modeling language, where
the physical or virtual media are represented as deploy-
ment components. In a Real-Time ABS model, different
deployment components may have different bounds on
the locally available resources.

Real-Time ABS introduces a separation of concerns
between the resource cost of performing a computation
and the resource capacity of a given deployment com-
ponent. This separation of concerns between resource
cost and resource capacity aids to model and validate
different deployment scenarios at an early stage dur-
ing the software development process. The focus in this
article is on CPU resources in virtualized media; we
use resource cost annotations to express the resource
consumption during computation. Deployment compo-
nents are discussed in Section 3.2.1 and resource con-
sumption in Section 3.2.2.

3.2.1 Deployment Components

A deployment component in Real-Time ABS captures
the execution capacity of a location in the deployment
architecture, on which a number of COGs can be de-
ployed. The execution capacity is specified as the amount
of resources which are available per accounting period;
for simplicity, this accounting period is fixed in the se-
mantics of Real-Time ABS and corresponds to the time
intervals between integer values in the dense time do-
main of the language. The main block of a model exe-
cutes in a root COG located on a default deployment
component environment, with unrestricted processing
capacity. To capture different deployment architectures,
a model may be extended with other deployment com-
ponents with different resource capacities. When COGs
are created, they are by default allocated to the same
deployment component as their creator, but they may
also be allocated to a different deployment component.
In contrast, an object which belongs to a COG will al-
ways be located on the same deployment components
as its group. Thus, in a model without explicit de-
ployment components all objects execute in the default

environment, which places no restrictions on the pro-
cessing capacity of the model.

Deployment components are first-class citizens of
Real-Time ABS. They may be passed around as ar-
guments to method calls, they support a number of
methods. Deployment components may be created dy-
namically, depending on control flow, or statically in the
main block of the model. This means that Real-Time
ABS is expressive enough to model, e.g., that new de-
ployment components are created by a provider, or that
deployment components are requested from a provider
by a resource-aware and scalable application, put to
use, and later released. This is illustrated in detail by
our case study in Section 2. Syntactically, deployment
components in Real-Time ABS are manipulated in a
way similar to objects. Variables which refer to deploy-
ment components are typed by an interface DC and
new deployment components are dynamically created
as instances of class DeploymentComponent, which im-
plements DC.

interface DC {
Int total();
Int load(Int n);
Int transfer(DC target, Int amount);

}

Fig. 6 The interface of deployment components.

The interface DC, shown in Figure 6, provides the
following methods for resource management: total() re-
turns the number of resources currently allocated to
the deployment component, load(n) returns the deploy-
ment component’s average load in percentage during
the last n accounting periods (i.e., the used compared
to the total number of resources for each accounting pe-
riod in the window), and transfer(target,r) reallocates
r resources from the current deployment component to
a target deployment component. If the former has less
than r resources available, the available amount is trans-
ferred (and provided as the return value of the call).

a ::= Cost: e | DC: e | a, a | . . .
e ::= thisDC() | . . .

rhs ::= new cog DeploymentComponent (e, e) | . . .
s ::= movecogto(e) | [a] s | . . .

Fig. 7 Syntax for deployment modeling in Real-Time ABS.

Deployment can be expressed with a small syntac-
tic extension to Real-Time ABS, shown in Figure 7.
Deployment components are created by the expression
new cog DeploymentComponent(d,c). Here, the param-
eter c of type Resource specifies the initial CPU ca-

8 E. Albert et al.

pacity of the deployment component. The parameter
d of type String is a descriptor mainly used for mon-
itoring purposes; i.e., it provides a user-defined name
for the deployment component which facilitates query-
ing the run-time state but that has no semantic effect.
Statements are extended to support two kinds of an-
notations: deployment and cost annotations. Whereas
cost annotations are explained in Section 3.2.2, deploy-
ment annotations relate to where new objects are lo-
cated. By default an object is deployed on the same
deployment component as its creator. However, a dif-
ferent deployment component may be selected associ-
ating an optional deployment annotation [DC: e] to the
object creation statement, where e is an expression of
type DC. Note that deployment annotations can only
occur associated with the creation of COGs.

An object may relocate the COG it belongs to a dif-
ferent deployment component e by executing the state-
ment movecogto(e). This is well-defined, because at
most one object can be active in a COG at any given
time. Since all objects are deployed on some deploy-
ment component, we let the expression thisDC() refer
to the deployment component where the object is cur-
rently deployed, similar to the standard self-reference
this in object-oriented languages.

3.2.2 Resource Consumption

The available resource capacity of a deployment com-
ponent determines the amount of computation which
may occur in the objects deployed on that deployment
component. Objects allocated to the deployment com-
ponent compete for the shared resources in order to
execute, and they may execute until the deployment
component runs out of resources or they are otherwise
blocked. For the case of CPU resources, the resources
of the deployment component define its capacity inside
an accounting period, after which the resources are re-
newed.

The resource consumption of executing statements
in the Real-Time ABS model is determined by a default
cost value which can be set as a compiler option (e.g.,
−defaultcost=10). However, the default cost does not
discriminate between the statements, so a more refined
cost model will often be desirable. For example, in a
realistic model the assignment x=e should have a sig-
nificantly higher cost for a complex expression e than
for a constant. For this reason, more fine-grained costs
can be inserted into Real-Time ABS models by means
of cost annotations [Cost: e] (see Figure 7). Note that
cost annotations can be associated with any statement,
and that a statement may have several annotations.

It is the responsibility of the modeler to specify ap-
propriate resource costs. A behavioral model with de-
fault costs may be gradually transformed to provide
more realistic resource-sensitive behavior by inserting
such cost annotations. The manual estimation of re-
source cost is time consuming and error-prone. There-
fore, it is desirable to have tool support for this activity.
COSTABS [3] is an automated static analysis tool that
is able to compute a worst-case approximation of the
resource consumption of the non-virtualized programs,
based on static analysis techniques. In the sequel, we
apply COSTABS to obtain such worst-case cost expres-
sions for the parts of the model that is deployed on
virtual machines, and use these expressions in our cost
annotations (see Section 4.1).

However, the modeler may also want to capture nor-
mative constraints on resource consumption, such as
resource limitations, at an abstract level; these can be
made explicit in the model during the very early stages
of the system design. To this end, cost annotations may
be used by the modeler to abstractly represent the cost
of some computation which is not fully specified.

4 Case Study: The ABS Model

The Replication System, introduced in Section 2, is part
of the Fredhopper Access Server (FAS). The current
Java implementation of FAS has over 150,000 lines of
code, of which 6,500 are part of the Replication Sys-
tem. The functional aspects of the Replication System
have previously been modeled in detail in ABS [48]. The
model was manually constructed. The automatic ex-
traction of models from Java implementations has been
studied for certain restricted kinds of distributed Java
applications in [8]. However, the generalization of such
automatic extraction techniques to standard Java ap-
plications would be much more difficult, mainly due to
the differences in the concurrency models of Java and
ABS.

In our case study the model was re-engineered from
the existing Java code, i.e., in hindsight. This is useful
to document and to analyze legacy code, as done here.
But ABS models can also be created and profitably used
during the design stage to find out the consequences of
design decisions in the concurrency architecture of an
implementation at an early stage. ABS models can be
created by anyone who has some familiarity with pro-
gramming and the basics of concurrency. In particular,
it is not necessary to know low-level concurrency as-
pects such as when programming in Java or C++.

This section describes how the model was extended
to capture non-functional and resource aspects of the
Replication System. The extended model consists of 40

Formal Modeling of Resource Management for Cloud Architectures 9

interface ClientJob {
Unit executeJob();
Int size();

}

interface SyncClient {
Unit scheduleJob(Schedule s);

}

interface ConnectionThread { }
interface Handler {
Unit transfer(Set<File> files);

}

interface Acceptor {
Handler createHandler(ClientJob job, Int cost);
Unit finish(Handler h);
Unit end();

}

interface CloudProvider {
DC createMachine(Int capacity);
Unit acquireMachine(DC vm);
Unit releaseMachine(DC vm);
Int getAccumulatedCost();

}

Fig. 8 Interfaces of the Replication System.

classes, 17 data types, and 80 user-defined functions
(in total 5,000 lines of ABS code, 25% of which capture
scheduling information as well as file systems and data
bases from third party libraries not included in the Java
implementation).

Figure 8 shows the main interfaces. The interface
ClientJob declares two methods. The task of method
executeJob() is to execute replication schedules, and
method size() returns the size of the client job’s un-
derlying file structure. Scheduling of a given replication
schedule s is done with method scheduleJob(Schedule s)
declared in interface SyncClient.

Objects of type ConnectionThread do not receive
method calls, so the interface ConnectionThread mod-
els its objects as active objects (without methods). The
interface Handler declares the method files that is re-
sponsible for file updating. The Handler objects are cre-
ated by objects of class ConnectionThread by invoking
the createHandler(job,cost) method of the Acceptor. On
method invocation, the acceptor creates handler ob-
jects on virtual machines which are acquired from a
CloudProvider by the method createMachine(capacity).
The methods acquireMachine(vm), releaseMachine(vm)
are used to start and stop virtual machines (modeled
by deployment components) to let replication schedules
be conducted by ConnectionThread objects. For presen-
tation purposes, we focus here on the interface imple-
mentations given in the classes CloudProvider, Acceptor,
and ConnectionThread.

The CloudProvider interface (shown in Figure 8) is
implemented by a class of the same name. Virtual ma-

chines are modeled by deployment components in ABS,
on which the client application can deploy objects. In
addition, the cloud provider keeps track of the accu-
mulated cost incurred by the client application. This
accumulated cost can be retrieved with the help of the
method getAccumulatedCost() at any time during ex-
ecution. The accumulated cost is calculated in terms
of the sum of the processing capacities of the active
virtual machines over time; i.e., a call to the method
acquireMachine(vm) starts the accounting for machine
vm and a call to the method releaseMachine(vm) stops
the accounting for vm. Inside the cloud provider, an ac-
tive run() method ensures that the accounting is done
for every accounting period. To focus on application-
level management of virtualized resources, as imple-
mented by the balancer, and not on a specific strat-
egy for cloud provisioning, we do not detail the cloud
provider further (one possible implementation of the
CloudProvider interface in Real-Time ABS is given in
[34]).

We model and compare three potential load bal-
ancing strategies offered by different implementations
of the Acceptor interface, for the application-level man-
agement of virtualized resources. When an Acceptor re-
ceives requests for file updates from ConnectionThread
objects, it deploys Handler objects on cloud instances
to conduct file updating with the ClientJob objects.
The implementations of Acceptor reflect different strate-
gies for interacting with the cloud provider to achieve
application-level resource management:

Constant balancing simply deploys all the objects of
type ConnectionThread on a single virtual machine
sufficient for the expected load, and keeps this ma-
chine running;

As-needed balancing calculates the needed CPU ca-
pacity of the virtual machine for a specific repli-
cation schedule with a given deadline, and deploys
Handler objects to a machine supplying the required
resources disregarding the cost; and

Budget-aware balancing calculates the CPU capac-
ity of the cloud instance for a given budget. Unused
funds can be “saved up” to cope with load spikes,
but the cost of running the system is still bounded
by the overall budget.

The Cloud User Account. Each acceptor encapsulates
an Account object that realizes the book-keeping for
a cloud user account (see Figure 9). The implementa-
tion AccountImpl maintains a data structure in the field
instances, which sorts the available virtual machines by
CPU processing capacity. Furthermore, the class keeps
track of the current cost per time unit costPerTimeUnit
for the cloud user account, and the observed start up

10 E. Albert et al.

interface Account {
DC getInstance(Int size);
Unit dropInstance(DC d);
Int getCostPerTimeUnit();
Int getLastInstanceStartUpTime();

}

class AccountImpl implements Account {
Map<Int, Set<DC>> instances = EmptyMap;
Int costPerTimeUnit = 0;
Int instanceStartUpTime = 0;

DC getInstance(Int size) {
DC d = null;
Time t = now();
costPerTimeUnit = costPerTimeUnit + size;
if (hasSetFor(instances, size)) {
d = takeOne(lookup(instances, size));
instances = removeFrom(instances, size, d);
Fut<Unit> fa = provider!acquireMachine(d); await fa?;

} else {
Fut<DC> fdc = provider!createMachine(size);
await fdc?; d = fdc.get;

}
instanceStartTime = timeDifference(t, now());
return d;

}

Unit dropInstance(DC d) {
Fut<Unit> fr = provider!releaseMachine(d); await fr?;
Fut<Int> fs = d!total("CPU"); await fs?; Int size = fs.get;
costPerTimeUnit = costPerTimeUnit − size;
instances = addToSet(instances, size, d);

}
}

Fig. 9 The Cloud User Account.

time instanceStartUpTime of the most recent virtual ma-
chine to start up. The method getInstance(size) either
requests a new virtual machine from the cloud provider
or brings online an existing offline machine of the ap-
propriate size. The method dropInstance(d) takes the
machine d offline when it is no longer active.

The load balancing strategies are defined in classes
implementing the Acceptor interface (two of these im-
plementations are detailed in Figure 10), as follows:

Constant balancing over-provisions by processing all
replication schedules on a single virtual machine with
sufficient capacity. Its implementation is shown in Fig-
ure 10 (class ConstantAcceptor). The acceptor initially
requests a single machine through its cloud user ac-
count and deploys all ConnectionThread objects to this
machine after initialization to process the replication
schedules.

As-needed balancing receives a request for a connec-
tion from a ClientJob object, calculates the resources
needed by the virtual machine to fulfill the replication
schedule, and requests a machine of appropriate size
through the user account. Implementation details are
omitted for brevity.

Budget-aware balancing is a strategy where the ac-
ceptor has a given budget per accounting period and
may “save resources” for later (class BudgetAcceptor in

class ConstantAcceptor(Int instanceSize, Account acc)
implements Acceptor {
DC dc = null;
Unit run() { dc = acc.getInstance(instanceSize); }
Handler createHandler(ClientJob job, Int cost) {

await dc != null;
[DC: dc] Handler h = new cog HandlerImpl(job, cost);
return h;

}
Unit finish(Handler h) { }
Unit end() { acc.dropInstance(dc);
}

}

class BudgetAcceptor(Account acc,
Int budgetPerTimeUnit) implements Acceptor {

Int availableBudget = 1; List<Int> budgetHistory = Nil;

Unit run() {
while (True) {
Int cu = acc.getCostPerTimeUnit();
availableBudget =
availableBudget + budgetPerTimeUnit − cu;

budgetHistory = Cons(availableBudget, budgetHistory);
await duration(1, 1);}

}
Handler createHandler(ClientJob job, Int cost) {
Int dur = durationValue(deadline());
Int startUp = acc.getLastInstanceStartUpTime();
Int wanted = (cost / dur) + 1 + startUp;
Int maxresource =
(budgetPerTimeUnit − costPerTimeUnit)
+ (max(availableBudget, 0) / dur);

Handler handler = null;
if (maxresource > 0) {
DC dc = acc.getInstance(min(wanted, maxresource));
[DC: dc] Handler h = new cog HandlerImpl(job, cost);}

return h;
}
Unit finish(Handler handler) {

Fut<DC> fdc = handler!release();
await fdc?; DC instance = fdc.get;
acc.dropInstance(instance);

}
Unit end() { }

}

Fig. 10 The classes ConstantAcceptor and BudgetAcceptor,
which implement the constant and budget-aware strategies.

Figure 10). The class parameter budgetPerTimeUnit pro-
vides this budget and the field availableBudget keeps
track of the accumulated (saved) unused resources, ac-
cording to the budget. When the acceptor receives a
request from a ClientJob object, it calculates the re-
sources needed to fulfill the schedule in wanted and the
resources it has available on the budget in maxresources.
If resources are available on the budget, the accep-
tor calls getInstance(size) on the user account to get
the best machine according to the budget. The run()
method monitors the resource usage and updates the
available budget for every accounting period. It also
maintains a log budgetHistory of the available resources
over time.

Formal Modeling of Resource Management for Cloud Architectures 11

4.1 Resource Analysis and Calibration

Our initial approach to providing cost annotations for
the ABS model of the Replication System, was to aver-
age measurements of the execution time of client jobs
for the different replication schedules on the Java im-
plementation (reported in [16]). In particular, we were
interested in jobs specified by the following two types
of replication schedules:

Search: A replication job originating from the search
schedule replicates changes from the search index,
i.e., the underlying data structure providing search
capability on a customer’s product items; and

Data: A replication job initiated by the data sched-
ule replicates changes concerning the item and nav-
igation indices, i.e., the core index structures and
data model for providing navigation on a customer’s
product items.

During the calibration of the simulation constants,
we identified a hot spot in the Java implementation
of the Replication System and located it to be in the
method transferItem(fileset) of ConnectionThread. In ABS
this corresponds to the method transferItem of the Handler
interface, implemented by the class HandlerImpl shown
in Figure 11. A hot spot denotes a region of a program
where a high proportion of executed instructions oc-
cur or where most time is spent during the program’s
execution.

class HandlerImpl(ClientJob job, Int cost) implements Handler {
Unit transfer(Set<File> fileset) {

[Cost: cost] this.transferItem(fileset);
}
Unit transferItem(Set<File> fileset) {...}

}

Fig. 11 Class HandlerImpl.

In our measurements, this method accounts for 99%
of the execution time. The hot spot justifies adding a
single cost annotation to the corresponding method in
the ABS model. As we aim to provide accurate sim-
ulation results at the modeling level, we make an in-
depth analysis of the hot spot in our model and use the
COSTABS tool [3] to statically analyse the resource
consumption of transferItem(fileset).

COSTABS is a cost analysis tool that, given an in-
put method, is able to automatically infer a sound upper
bound on its resource consumption. In other words, the
analysis guarantees that the execution of the method
will never exceed the inferred amount of resources for
any input data.

In Sections 4.1.1–4.1.4 we describe in detail how we
have used COSTABS to analyse the resource consump-
tion of the transferItem(fileset) method and explain the
different parameters that occur in the analysis. Using
the derived cost expression, in Section 4.1.5 we describe
how we synthesize other simulation parameters.

It is important to note that the derived cost expres-
sion is for a single request. Results for dynamic behavior
of the environment, e.g., fluctuating demand or a load
spike at a certain time, can be obtained by implement-
ing these scenarios as part of the model and measuring
the load on the deployment components. An example
of implementing dynamic client scenarios in such a way
can be found in [32].

4.1.1 Cost Metrics

The first option to be selected in COSTABS is the cost
metric (a.k.a. cost model) which specifies the type of
resource we want to measure. COSTABS offers a wide
range of cost models [2], including traditional cost mod-
els for measuring the number of execution steps and
memory allocation, and also cost models specific to con-
current and distributed applications like the task-level
of the program which estimates the peak of tasks that
can be simultaneously spawned in the execution.

In our case study, we are interested in justifying
the worst-case execution time of transferItem(fileset).
For this purpose, we have selected the cost model that
counts the number of execution steps. This includes
both, steps performed in the functional and steps in the
imperative part of the ABS model. On the one hand,
execution time is often directly related to the number
of execution steps performed, although even for static
deployment some other factors also clearly influence the
execution time (see work on WCET [35]). On the other
hand, we are also interested in understanding the com-
putational complexity of the method transferItem. Thus,
we need a cost model which assigns cost to all instruc-
tions of the program and does not ignore certain parts.
This would not be achieved for instance with a cost
model that infers memory consumption, since a loop
that does not allocate memory has an associated re-
source consumption zero, while its computational com-
plexity is not zero.

4.1.2 Size Abstraction

The goal of the cost analysis is to infer closed-form up-
per bounds provided as functions on the data input
sizes. When a program manipulates terms, its cost usu-
ally depends on the size of the terms. For instance, if

12 E. Albert et al.

def Int sizeofFiles(Set<File> t) =
case t {
EmptySet => 1;
Insert(f, fs) => 1 + sizeofFile(f) + sizeofFiles(fs);

};

def Int sizeofFile(File t) =
case t {
Pair(fId,fContent) =>
1 + sizeofFileId(fId) + sizeofFileContent(fContent);

};

def Int sizeofFileId(FileId t) = strlen(t);

Fig. 12 Selected size abstractions for Set of Files.

a loop traverses a list, the cost of the loop often de-
pends on its length. COSTABS relies on the notion
of norms [14] to define the size of a term. Norms are
functions that map terms to their sizes. Any norm can
be used in the analysis, depending on the nature of
the data structures used in the program. They can
also be synthesized automatically from the program’s
type definitions. In what follows, we use the term-size
norm, which counts the number of type constructors
in a given term, defined as: size(Co(t1 , . . . , tn)) = 1 +

Σn
i=1size(ti) and size(x) = x. Note that the size of a

program variable x is defined as x. In this way, we ac-
count for the size of the term to which x is bound at
runtime.

Our target method transferItem(fileset) has a param-
eter of type Set<File>. Set is a predefined ABS type
that can be EmptySet or Insert(f,fs), where f is of type
File and fs of type Set<File>. The type File is defined as
type File = Pair<FileId,FileContent> in ABS (we omit
the definition of FileContent since it is not relevant). The
functions provided in Figure 12 define (part of) the size
abstraction used by the analyzer for Set<File>. These
functions will be used later by the simulator to evaluate
the cost functions on specific input data.

4.1.3 Class Invariants

When the cost depends on the size of data stored in
fields, inferring cost often requires class invariants that
provide guarantees on such fields. In general, such class
invariants are a way to incorporate guarantees on the
global states when the considered process is resumed.
In our case study, the cost of executing the method
transferItem(fileset) depends on a field rdir that has type
Directory and is declared in class ClientDataBaseImp. It
represents the directory which keeps all files whose con-
tent is to be transferred. Some operations carried out to
transfer items traverse the directory rdir. To be able to
infer an upper bound for the method, we need to spec-
ify that the field rdir is finite, i.e., bounded from above.

This can be specified by means of the following class
invariant [rdir <= max(rdir)] which states that field rdir
has a maximum value that is denoted by max(rdir) in
what follows. This invariant is the only manual input re-
quired to infer an upper bound for transferItem(fileset):
the analysis is fully automatic otherwise.

4.1.4 Upper Bounds

After having selected the cost model and the size ab-
straction, and having provided the class invariant, we
automatically infer the following (asymptotic) upper
bound using COSTABS:

nat(fileset)2∗nat(max(rdir)) + nat(fileset)3

This upper bound is a polynomial of degree 3 on the
argument fileset and the class field rdir. Function nat is
defined as: “def Int nat(Int a) = if a > 0 then a else 0;”
and used to avoid negative values of the upper bound
expression.

Method transferItems has 28 lines of code. All such
code is included in a loop that traverses the data struc-
ture fileSet (the method parameter) using an Iterator.
Hence, its cost is an expression of the form nat(fileSet)∗
(max_cost_iteration), where nat(fileSet) corresponds to
the number of iterations of the loop (i.e., the size of the
traversed data structure). As regards the worst case
cost of each iteration, denoted as max_cost_iteration,
we have that 8 functions and 7 methods are invoked
directly within such loop. Besides, such functions and
methods invoke transitively others. Altogether, in order
to obtain this upper bound, COSTABS has analyzed 37
methods and functions that were transitively invoked
from transferItem(fileset). The worst case cost of all such
15 methods and functions is accumulated together in
order to obtain max_cost_iteration. In particular, one
of the invoked methods has already an asymptotic com-
plexity of nat(fileSet)∗nat(max(rdir))+nat(fileSet)2∗. The
other methods that are invoked have the same order
or smaller complexity. Thus, when adding (asymptoti-
cally) all complexities of the invoked methods we have
that max_cost_iteration=nat(fileSet)∗nat(max(rdir))+
nat(fileSet)2, which is multiplied by nat(fileSet), result-
ing in the above upper bound.

The analysis has revealed that the execution time
of the method is asymptotically larger than any other
bound obtained for any of the remaining functions and
methods. This explains the hot spot and gives clear
directives for potential optimizations.

4.1.5 Model Calibration

The implementation of the ConnectionThread interface
is sketched Figure 13 along with the type signature of

Formal Modeling of Resource Management for Cloud Architectures 13

def Int cost(Int sizeOfFileSet, Int sizeOfFileStructure) = ...;

class ConnectionThreadImpl(ClientJob job, Acceptor accpt,
SyncServer server) implements ConnectionThread {
Maybe<Command> cmd = Nothing;
Set<Schedule> schedules = EmptySet;
Unit run() {

await cmd != Nothing;
schedules = this.sendSchedule();
if (cmd != Just(ListSchedule)) {
...
while (hasNext(filesets)) {
Pair<Set<Set<File>>,Set<File>> nfs = next(filesets);
filesets = fst(nfs); Set<File> fileset = snd(nfs);
Fut<Int> sf = job!size(); Int size = sf.get;
accpt.createHandler(job, cost(sizeofFiles(fileset), size));

}
...

} } }

Fig. 13 Class ConnectionThreadImpl.

the cost function that is generated by COSTABS and
that returns the asymptotic upper bound computed in
the previous section of the number of execution steps
inside transferItem(fileset).

Schedule Interval Deadline
Search 11 3
Data 11 11

Table 1 Derived interval and deadline parameters for simu-
lation.

Using the inferred cost expression, we extend the
functional ABS model of the Replication System with
annotations for resource and timing information. To de-
termine suitable deadlines for the individual schedules
and the intervals between each ClientJob, we calibrate
the model by considering a reference scenario for which
we aim to meet all deadlines. Here, we select as our
reference scenario the case of one single typical live en-
vironment, and set the capacity of the cloud instance
such that it can successfully handle its client. We itera-
tively simulated a Replication System consisting of one
SyncClient and a fixed number of replication jobs on a
single cloud instance that offers 161600 CPU resources
per time unit (corresponding to an accounting period
in the model) and the interval to 11 time units between
replication jobs. With these parameters, we determine
the lowest deadlines of each types of schedules that can
be met by all replication jobs, that is, 100% QoS (qual-
ity of service). Table 1 also shows the results of this
initial simulation.

4.2 Simulation Results

Table 2 shows a comparison between the average ex-
ecution time of replication jobs per type of schedule

Schedule Execution Time Simulated Cost
Search 34.0s 90682
Data 274.9s 885315

Table 2 Comparison between execution time of the Java
implementation of the Replication System against simulated
cost.

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q
oS

 (%
)

Live Environments
Constant As-needed Budget

Fig. 14 Simulation results: QoS, varying over the number
of live environments.

0M

50M

100M

150M

200M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
os

t

Live Environments
Constant As-needed Budget

Fig. 15 Simulation results: Total cost, varying over the
number of live environments.

measured on the Java implementation of the Replica-
tion System and the average cost of simulated jobs in
the ABS model using the inferred upper bound cost
expression from COSTABS. We observe that jobs spec-
ified by the Search schedule are ca. 8.1 times cheaper
than jobs specified by the Data schedule in the Java
implementation while they are ca. 9.76 times cheaper
in the ABS model. This is due to the fact that the in-
ferred cost expression defines the worst cost instead of
the average cost.

The following figures show the simulation results
that we obtained for the different balancing strategies,
varying over the number of live environments. Each
simulation runs for 100 time units in different scenar-
ios varying from 1 to 20 live environments (in reality,
up to 20 environments are typically required to handle

14 E. Albert et al.

large query throughputs over a large number of prod-
uct items). For each number of environments and for
each balancing strategy, Figure 14 shows the quality of
service (QoS) as a percentage of replication jobs whose
deadlines have been met and Figure 15 shows the to-
tal accumulated cost. The results exhibit some of the
brittleness of an overloaded system.

As explained in Section 4.1.5, we calibrated the ABS
model by establishing a deployment component size for
the constant and budget balancing strategies such that
the Replication System was able to handle a scenario
with one live environment without missing deadlines
(100% QoS). We then chose a size and a budget for the
balancing strategies that would let us observe behavior
both under normal load and overloaded scenarios. The
system behavior differed remarkably for the three bal-
ancing strategies under higher load. As expected, the
as-needed balancing strategy exhibits 100% QoS, albeit
with simulated cost rising linearly with the number of
clients and ending orders of magnitude above the other
two strategies.

On the other hand, to model the budget-aware bal-
ancing strategy, the BudgetAcceptor needs to be able
to reject tasks (to stay within the budget). When the
system is overloaded, this can be observed through a
degraded QoS and, somewhat more surprisingly at first
sight, by a decreasing overall cost. We observed that
under high load, the BudgetAcceptor only managed to
fit in jobs from the cheaper Search schedule, while re-
jecting most jobs of the more expensive Data schedule
(see Table 2). It must be said that this scenario is not
conducive for showing the advantages of the budget-
aware strategy—in a scenario of permanent high load,
this strategy cannot ever accumulate the surplus needed
to handle momentary load spikes. On the other hand,
below the maximum load the budget-aware strategy
performs as well as but much cheaper than the over-
provisioning (constant) strategy, while being able to
deal with transient higher loads.

Finally, we compared the simulation results to mea-
surements obtained from the real system. We measured
the execution time of individual replication schedules
on the Java implementation of the Replication System
on a reference machine (4 core CPU 2.5GHz, 8GB mem-
ory). The Replication System was configured to con-
duct search and data replications at every 11 seconds
interval, while the staging environment was subjected
to continuous data update, with the number of live en-
vironments ranging from one to twenty. I.e., both sim-
ulation and real system were running under identical
replication load, so the simulated cost and measured
execution time should correlate.

0

18

35

53

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0M

50M

100M

150M

200M

Ex
ec

ut
io

n
tim

e
(s

)

Live Environments

Si
m

ul
at

io
n

C
os

t

Implementation running time Model simulation cost

Fig. 16 Comparison of the measured execution time of the
implementation (left scale) and the accumulated cost of the
simulation for the as-needed policy (right scale).

Figure 16 shows that both simulated cost and mea-
sured execution time grow linearly as expected. It can
further be seen that the real system’s execution time
does not start from zero, which can be seen most clearly
in the case of few live environments and is a result of
the start-up time of the real system (Java initialization,
etc.). Upon reflection, we decided not to model start-
up time, since this one-time cost is amortized among all
requests made during the server lifetime and hence is a
negligible factor in a long-running system such as the
FAS Replication System. For a short-running system
where this factor becomes important, it can trivially
be incorporated into the model using a constant cost
annotation at the beginning of execution.

4.3 Experience

Abstraction. When modeling the existing Java imple-
mentation of the Replication System using Real-
Time ABS, we have employed the abstraction mech-
anisms offered by Real-Time ABS. For example, we
express disk-level and file operations as functions
over algebraic data types while hardware constraints
as deployment components.

Functional and OO. Given some practical experience
with functional (e.g. Haskell) and object-oriented
programming (e.g. Java), when modeling the Repli-
cation System we were able to very quickly become
proficient at both the functional and the object ori-
ented language layers of Real-Time ABS.

Concurrency. When modeling the Replication Proto-
col using Real-Time ABS, we have to extract the
implicit multi-threaded behavior manifest from the
combination of reentrant read write lock usage
and subclassing to a cooperative scheduling model
whereby all scheduling points are made explicit at

Formal Modeling of Resource Management for Cloud Architectures 15

the syntactic level. This modeling exercise increased
our insight into the existing Java implementation.

Tool support. Real-Time ABS comes with an Eclipse
plugin [47] that provides syntax highlighting, on-
the-fly type checking, code completion, and imple-
mentation and type hierarchy navigation. These fa-
cilities have made modeling large systems such as
the Replication System using Real-Time ABS prac-
tically possible and efficient.

5 Related Work

To reduce complexity, general-purpose modeling lan-
guages strive for abstraction [36]: descriptions primar-
ily focus on the functional behavior and logical com-
position of software, largely overlooking how the soft-
ware’s deployment influences its behavior. However, by
using virtualization technology an application can mod-
ify resource parameters of its deployment environment
during execution, e.g., it may dynamically create vir-
tual processors. For cyber-physical and embedded sys-
tems it is today accepted that modeling and program-
ming languages need a timed semantics [38]. The Java
Real-Time Specification (RTSJ) [19] extends Java with
high-resolution time, including absolute time and rela-
tive time, and new thread concepts to solve time-critical
problems: threads in RTSJ offer more precise scheduling
than standard threads, with 28 strictly enforced prior-
ity levels. The modeling and analysis of single resources
is discussed in, e.g., [3,24,45]. Resource-aware program-
ming allows users to monitor the resources consumed
by their programs, to manage such resources in the pro-
grams, and to transfer (i.e., add or remove) resources
dynamically between distributed computations [39].

Resource constraints in the embedded systems do-
main led to a large body of work on performance anal-
ysis using formal models based on, e.g., process alge-
bra [13], Petri Nets [43], and priced [18], timed [9], and
probabilistic [12] automata and games (an overview of
automata-based approaches is [45]). Related approaches
are also applied to web services and business processes
with resource constraints [27,40]. These approaches typ-
ically abstract away from the data flow and declare the
cost of transitions in terms of time or in terms of a sin-
gle resource. The automata-based modeling language
MODEST [17] combines functional and non-functional
requirements for stochastic systems, using a process al-
gebra with dynamically computed weight expressions
in probabilistic choice. Compared to ABS, these ap-
proaches do not associate capacities with locations but
focus on non-functional aspects of embedded system
without resource provisioning and management of dy-
namically created locations as studied in our article.

Work on the modeling of object-oriented systems
with resource constraints is scarce. The UML profile
for scheduling, performance and time (SPT) describes
scheduling policies according to the underlying deploy-
ment model [25]. Using SPT, the Core Scenario Model
(CSM) [42] is informally defined to generate perfor-
mance models from UML. However, CSM is not ex-
ecutable as it only identifies a subset of the possible
system behaviors [42]. Verhoef’s extension of VDM++
for embedded real-time systems [44] is based on ab-
stract executable specification and models static de-
ployment of fixed resources targeting the embedded do-
main, namely CPUs and buses.

Related work on simulation tools for cloud comput-
ing is mostly reminiscent of network simulators. Test-
ing techniques and tools for cloud-based software sys-
tems are surveyed in [11]. In particular, CloudSim [22]
and ICanCloud [41] are simulation tools using virtual
machines to simulate cloud environments. CloudSim is
a mature tool which has been used for a number of
papers, but it is restricted to simulations on a single
computer. In contrast, ICanCloud supports distribu-
tion on a cluster. EMUSIM [21] is an integrated tool
that uses AEF (Automated Emulation Framework) to
estimate performance and costs for an application by
means of emulations to produce improved input param-
eters for simulations in CloudSim. Compared to these
approaches, our work aims to support the developer of
client applications for cloud-based environments at an
early phase in the software engineering process and is
based on a formal semantics.

Resource analysis [4, 28, 29, 46] aims at estimating
the resource usage of a given program and providing
guarantees that the program will not exceed the in-
ferred amount of resources. Typically, such analyses are
either based on monitoring the program execution, or
on formal methods that are able to infer this infor-
mation statically, i.e., without executing the program
on concrete data. Static approaches have a clear con-
ceptual advantage over monitoring, since they provide
guarantees that are valid for any input, not only for
specific runs. There exist several powerful static re-
source analyzers (including COSTA [4], SPEED [28],
RAML [29]), however, these have mainly dealt with tra-
ditional (i.e., non real-time, non-distributed) applica-
tions. A recent extension [3] deals with the theoretical
complications that distributed systems pose to static
analysis and reports on a prototype implementation. In
this article, for the first time, resource analysis has been
applied to a case study of industrial size.

In software design, no general, systematic means ex-
ists today to model and analyze software in the context
of a set of available virtualized resources, nor to an-

16 E. Albert et al.

alyze resource redistribution in terms of load balanc-
ing or reflective operations. None of the cited works di-
rectly addresses the challenges raised by virtualization;
in particular, they do not model quantitative resources
as data inside the system itself, which is a key aspect
of virtualized computations.

6 Conclusion and Future Work

Industry leaders in cloud computing research recently
expressed “the need to describe your infrastructure re-
quirements as executable code” (Thomas Schwindt, IBM
Research Labs Zurich in [26]) as well as that “perfor-
mance modeling is a future key technology” (Bryan
Stephenson, HP Labs Palo Alto, also in [26]). These
judgments align perfectly with the main result of this
article: that it is possible to model and analyze low-level
software aspects, including performance, resource con-
sumption, and deployment, in an executable, abstract
language. The Real-Time ABS language used for this
purpose shows that it can cope with an industrial case
study.

As an immediate benefit from executable abstract
modeling, it is possible to perform comprehensive sim-
ulations that allow to predict and to evaluate the con-
sequences of different scheduling, load balancing, and
deployment strategies. We also demonstrated that one
can calibrate the model in such a way that meaningful
comparisons and predictions relative to deployed code
are possible. This led to the identification of a hot spot
in the actual production code.

The formal semantics of Real-Time ABS makes it
feasible to analyze models statically. Using the cost
analysis tool COSTABS, it is possible to automatically
compute symbolic worst-case bounds for resource con-
sumption. To the best of our knowledge, static resource
analysis is applied here the first time successfully on an
industrial-strength case study.

The inferred bounds were in turn used to automati-
cally provide cost annotations for expressions and state-
ments in the Real-Time ABS model, hence making their
manual creation unnecessary. This allows for a hybrid
deployment validation approach where dynamic simu-
lation and static analysis combine their strengths.

In summary, the results of this paper demonstrate
that the combination of abstract, executable model-
ing together with state-of-the-art static analysis tools is
well on the way toward tool-supported software design
of virtualized applications. This line of research may in a
longer perspective pave the way towards a model-based
analysis of service-level agreements [5].

We plan to extend this work in several directions.
As regards the static analysis tool, it currently infers re-

source estimates at the level of components (namely ob-
jects) and without taking into account deployment con-
figurations. For instance, if two objects are distributed
in different machines their execution can run in paral-
lel and their costs should not be accumulated in order
to compute a system-level estimate of the resource con-
sumption. We plan to incorporate such system-level ap-
proach in the resource analyzer by taking deployment
configurations into account. Besides, further work on
industrial size case studies will allow us to both further
mature our technology and assess its scope of applica-
tion.

Acknowledgements Although the author list of this article
is rather long already, we gratefully thank the many more
people who have been involved in the development of the
ABS and Real-Time ABS languages, their toolset, as well
as the COSTABS system. Without their effort, the research
reported here would not have been possible.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Compu-
tations in Distributed Systems. MIT Press (1986)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M.,
Puebla, G.: Cost Analysis of Concurrent OO programs.
In: The 9th Asian Symposium on Programming Lan-
guages and Systems (APLAS’11), LNCS, vol. 7078, pp.
238–254. Springer (2011)

3. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M.,
Puebla, G.: COSTABS: a cost and termination analyzer
for ABS. In: O. Kiselyov, S. Thompson (eds.) Proc.
Workshop on Partial Evaluation and Program Manipu-
lation (PEPM’12), pp. 151–154. ACM (2012)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanar-
dini, D.: Cost Analysis of Object-Oriented Bytecode Pro-
grams. TCS 413(1), 142–159 (2012)

5. Albert, E., de Boer, F., Hähnle, R., Johnsen, E.B., Lan-
eve, C.: Engineering Virtualized Services. In: M.A. Babar
and M. Dumas (eds.) Proc. 2nd Nordic Symposium
on Cloud Computing & Internet Technologies (Nordi-
Cloud’13), pp. 59–63. ACM (2013)

6. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla,
G., Román-Díez, G.: Verified resource guarantees using
COSTA and KeY. In: ACM SIGPLANWorkshop on Par-
tial Evaluation and Semantics-based Program Manipula-
tion (PEPM’11). ACM Press (2011)

7. Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen,
E.B., Schlatte, R., Tapia Tarifa, S.L.: Simulating concur-
rent behaviors with worst-case cost bounds. In: M. But-
ler, W. Schulte (eds.) FM 2011, LNCS, vol. 6664, pp.
353–368. Springer (2011)

8. Albert, E., Østvold, B.M., Rojas, J.M.: Automated ex-
traction of abstract behavioural models from JMS appli-
cations. In: Formal Methods for Industrial Critical Sys-
tems (FMICS’12), LNCS, vol. 7437, pp. 16–31. Springer
(2012)

9. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P.,
Yi, W.: TIMES: A tool for schedulability analysis and
code generation of real-time systems. In: K.G. Larsen,
P. Niebert (eds.) Proc. of the First International Work-
shop on Formal Modeling and Analysis of Timed Systems

Formal Modeling of Resource Management for Cloud Architectures 17

(FORMATS 2003), LNCS, vol. 2791, pp. 60–72. Springer
(2003)

10. Armstrong, J.: Programming Erlang: Software for a Con-
current World. Pragmatic Bookshelf (2007)

11. Bai, X., Li, M., Chen, B., Tsai, W.T., Gao, J.: Cloud test-
ing tools. In: J.Z. Gao, X. Lu, M. Younas, H. Zhu (eds.)
Proc. 6th Intl. Symposium on Service Oriented System
Engineering (SOSE’11), pp. 1–12. IEEE (2011)

12. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.:
Performance evaluation and model checking join forces.
Comm. ACM 53(9), 76–85 (2010)

13. Barbanera, F., Bugliesi, M., Dezani-Ciancaglini, M., Sas-
sone, V.: Space-aware ambients and processes. TCS
373(1–2), 41–69 (2007)

14. Benoy, F., King, A.: Inferring argument size relationships
with CLP(R). In: Proc. of LOPSTR’97, LNCS, vol. 1207,
pp. 204–223. Springer (1997)

15. Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R.,
Tapia Tarifa, S.L.: User-defined schedulers for real-time
concurrent objects. Innovations in Systems and Software
Engineering 9(1), 29–43 (2012)

16. de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R.,
Wong, P.Y.H.: Formal modeling of resource management
for cloud architectures: An industrial case study. In: F.D.
Paoli, E. Pimentel, G. Zavattaro (eds.) Proc. European
Conference on Service-Oriented and Cloud Computing
(ESOCC 2012), LNCS, vol. 7592, pp. 91–106. Springer
(2012)

17. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Ka-
toen, J.P.: MODEST: A compositional modeling formal-
ism for hard and softly timed systems. IEEE Trans. Soft-
ware Eng. 32(10), 812–830 (2006)

18. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.:
Quantitative analysis of real-time systems using priced
timed automata. Comm. ACM 54(9), 78–87 (2011)

19. Bruno, E.J., Bollella, G.: Real-Time Java Programming:
With Java RTS. Prentice Hall PTR (2009)

20. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic,
I.: Cloud computing and emerging IT platforms: Vision,
hype, and reality for delivering computing as the 5th util-
ity. Future Generation Computer Systems 25(6), 599–616
(2009)

21. Calheiros, R.N., Netto, M.A., Rose, C.A.D., Buyya, R.:
EMUSIM: an integrated emulation and simulation en-
vironment for modeling, evaluation, and validation of
performance of cloud computing applications. Software:
Practice and Experience 43(5), 595–612 (2012)

22. Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose,
C.A.F.D., Buyya, R.: CloudSim: a toolkit for model-
ing and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software,
Practice and Experience 41(1), 23–50 (2011)

23. Caromel, D., Henrio, L.: A Theory of Distributed Ob-
jects. Springer (2005)

24. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula,
G.C.: Enforcing resource bounds via static verification of
dynamic checks. ACM ToPLaS 29(5) (2007)

25. Douglass, B.P.: Real Time UML – Advances in the UML
for Real-Time Systems, 3 edn. Addison-Wesley (2004)

26. ESOCC panel discussion: Global management in service-
oriented and cloud computing: Challenges and open is-
sues. European Conference on Service-Oriented and
Cloud Computing (ESSOC) (2012)

27. Foster, H., Emmerich, W., Kramer, J., Magee, J., Rosen-
blum, D.S., Uchitel, S.: Model checking service com-
positions under resource constraints. In: I. Crnkovic,

A. Bertolino (eds.) Proc. 6th joint meeting of the Eu-
ropean Software Engineering Conf. and the ACM SIG-
SOFT Intl. Symposium on Foundations of Software En-
gineering (ESEC/FSE’07), pp. 225–234. ACM (2007)

28. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Pre-
cise and Efficient Static Estimation of Program Com-
putational Complexity. In: POPL, pp. 127–139. ACM
(2009)

29. Hoffmann, J., Hofmann, M.: Amortized Resource Anal-
ysis with Polynomial Potential. In: The 19th Euro-
pean Symposium on Programming (ESOP’10), LNCS,
vol. 6012, pp. 287–306. Springer (2010)

30. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Stef-
fen, M.: ABS: A core language for abstract behavioral
specification. In: B. Aichernig, F.S. de Boer, M.M.
Bonsangue (eds.) Proc. 9th International Symposium on
Formal Methods for Components and Objects (FMCO
2010), LNCS, vol. 6957, pp. 142–164. Springer (2011)

31. Johnsen, E.B., Owe, O.: An asynchronous communica-
tion model for distributed concurrent objects. Software
and Systems Modeling 6(1), 35–58 (2007)

32. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.:
Dynamic resource reallocation between deployment com-
ponents. In: J.S. Dong, H. Zhu (eds.) Proc. Inter-
national Conference on Formal Engineering Methods
(ICFEM’10), LNCS, vol. 6447, pp. 646–661. Springer
(2010)

33. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.:
Validating timed models of deployment components with
parametric concurrency. In: B. Beckert, C. Marché (eds.)
Proc. International Conference on Formal Verification
of Object-Oriented Software (FoVeOOS’10), LNCS, vol.
6528, pp. 46–60. Springer (2011)

34. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling
resource-aware virtualized applications for the cloud in
Real-Time ABS. In: T. Aoki, K. Tagushi (eds.) Proc. 14th
International Conference on Formal Engineering Meth-
ods (ICFEM’12), LNCS, vol. 7635, pp. 71–86. Springer
(2012)

35. Kirner, R., Puschner, P.P.: Classification of WCET anal-
ysis techniques. In: ISORC, pp. 190–199. IEEE Computer
Society (2005)

36. Kramer, J.: Is abstraction the key to computing? Comm.
ACM 50(4), 36–42 (2007)

37. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nut-
shell. International Journal on Software Tools for Tech-
nology Transfer 1(1–2), 134–152 (1997)

38. Lee, E.A.: Computing needs time. Comm. ACM 52(5),
70–79 (2009)

39. Moreau, L., Queinnec, C.: Resource aware programming.
ACM ToPLaS 27(3), 441–476 (2005)

40. Netjes, M., van der Aalst, W.M., Reijers, H.A.: Analy-
sis of resource-constrained processes with Colored Petri
Nets. In: K. Jensen (ed.) Proceedings of the Sixth Work-
shop on the Practical Use of Coloured Petri Nets and
CPN Tools (CPN 2005), DAIMI, vol. 576. University of
Aarhus (2005)

41. Nuñez, A., Vázquez-Poletti, J., Caminero, A., Castañé,
G., Carretero, J., Llorente, I.: iCanCloud: A flexible and
scalable cloud infrastructure simulator. Journal of Grid
Computing 10, 185–209 (2012)

42. Petriu, D.B., Woodside, C.M.: An intermediate meta-
model with scenarios and resources for generating perfor-
mance models from UML designs. Software and System
Modeling 6(2), 163–184 (2007)

43. Sgroi, M., Lavagno, L., Watanabe, Y., Sangiovanni-
Vincentelli, A.: Synthesis of embedded software using

18 E. Albert et al.

free-choice Petri nets. In: Proc. 36th ACM/IEEE Design
Automation Conference (DAC’99), pp. 805–810. ACM
(1999)

44. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and
validating distributed embedded real-time systems with
VDM++. In: J. Misra, T. Nipkow, E. Sekerinski (eds.)
Proceedings of the 14th International Symposium on For-
mal Methods (FM’06), LNCS, vol. 4085, pp. 147–162.
Springer (2006)

45. Vulgarakis, A., Seceleanu, C.C.: Embedded systems re-
sources: Views on modeling and analysis. In: Proc. 32nd
IEEE Intl. Computer Software and Applications Confer-
ence (COMPSAC’08), pp. 1321–1328. IEEE Computer
Society (2008)

46. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N.,
Thesing, S., Whalley, D.B., Bernat, G., Ferdinand,
C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The worst-
case execution-time problem—overview of methods and
survey of tools. ACM Trans. Embedded Comput. Syst.
7(3) (2008)

47. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J.,
Schäfer, J., Schlatte, R.: The ABS tool suite: modelling,
executing and analysing distributed adaptable object-
oriented systems. International Journal on Software
Tools for Technology Transfer (STTT) 14(5), 567–588
(2012)

48. Wong, P.Y.H., Diakov, N., Schaefer, I.: Modelling Dis-
tributed Adaptable Object Oriented Systems using
HATS Approach: A Fredhopper Case Study (invited pa-
per). In: 2nd International Conference on Formal Ver-
ification of Object-Oriented Software, LNCS, vol. 7421.
Springer (2012)

